
A Simple Approach to DNS DoS Mitigation

Hitesh Ballani, Paul Francis
Cornell University, Ithaca, NY

ABSTRACT

We consider DoS attacks on DNS where attackers flood
the nameservers of a zone to disrupt resolution of re-
source records belonging to the zone and consequently,
any of its sub-zones. We argue that a minor change in the
caching behavior of DNS resolvers can significantly mit-
igate the impact of such attacks. In our proposal, DNS
resolvers do not completely evict cached records whose
TTL has expired; rather, such records are stored in a sep-
arate “stale cache”. If, during the resolution of a query,
a resolver does not receive any response from the name-
servers that are responsible for authoritatively answering
the query, it can use the information stored in the stale
cache to answer the query. This, in effect, implies that
DNS resolvers store the part of the global DNS database
that has been accessed by them but use it only when
the relevant DNS servers are unavailable. While such a
change to DNS resolvers also changes DNS semantics,
we show that it does not adversely impact any of the fun-
damental DNS characteristics such as the autonomy of
zone operators and hence, is a very simple and practical
candidate for alleviating the impact of DoS attacks on
DNS.

1 INTRODUCTION

In the recent past, there have been many instances of
flooding attacks on the Domain Name System (DNS)
aimed at preventing clients from resolving resource
records belonging to the zone under attack [16–19]. The
frequency of such attacks on DNS can be attributed to a
number of factors including, but not restricted to:

• Its pivotal role as a precursor to almost all Internet
services implies that a common attack mechanism
applies to a large number of services.

• Its connectionless and mostly unauthenticated mode
of operation.

• The limited redundancy in nameservers and the re-
sulting limited attack resilience [14]. Consequently,
in many cases, it is easier to attack the DNS servers
for a service than the actual application servers.

• Shared deployments whereby a single commercial
DNS provider offers DNS services to a large num-

ber of customers are especially attractive targets due
to the large attack impact [19].1

In response to such attacks, some of the DNS root-
servers and top-level domain servers have been repli-
cated through IP Anycast [7].

Lately, a number of research efforts have proposed
new architectures for Internet’s naming system. These ar-
chitectures, among other things, aim to increase DNS ro-
bustness by ensuring system availability in the face of at-
tacks. For instance, efforts arguing for a centralized DNS
infrastructure [5] and a peer-to-peer based DNS infras-
tructure [4,13,15] represent the two extremes of this de-
sign space.

Alternatively, a complimentary tact to handle attacks
on the infrastructure is to do away with the need for
100% availability. Specifically, in the case of DNS, this
would entail ensuring that when the nameservers for a
DNS zone are unavailable, most names in the zone can
still be resolved and hence, most services in the zone
are still accessible. For example, Kangasharju et. al. [9]
achieve this by multicasting the global DNS database to
specialized servers while Handley et. al. [6] propose a
peer-to-peer design to do the same. However, we are not
convinced of the need for a new dissemination mecha-
nism to ensure DNS operation when nameservers are un-
available. In this paper we take a much more modest path
and show that the need for nameserver availability in the
existing DNS framework can be reduced simply through
a minor modification in the caching behavior of DNS re-
solvers.

Today, DNS resolvers cache the responses they re-
ceive from nameservers to improve lookup performance
and reduce lookup overhead. A resolver can use the
cached responses to answer queries for a duration spec-
ified by the time-to-live (TTL) value associated with the
response. We propose to modify the operation of re-
solvers such that they do not expunge cached records
whose TTL value has expired. Rather, such records are
evicted from the cache and stored in a separate “stale
cache”. Given a query that cannot be answered based
on the cached information, resolvers today traverse down
a hierarchy of DNS zones by querying the authoritative
nameservers for the zone at each step. However, this res-
olution process fails if all the nameservers for the zone at

1Although it could be argued that shared deployments make attacks
harder by amortizing the effort of a planned, robust server deployment.

1HotNetsV Session 4: The Contrarians 67

any step of this traversal are unavailable. In such a sce-
nario, we allow resolvers to use the information stored in
their stale cache to answer the query for the unavailable
zone and thus, allow the resolution process to continue.

Modifying DNS resolvers as specified above results
in normal DNS operation when resolvers are able to ac-
cess nameservers; only when all the nameservers for a
zone do not respond to the queries from a resolver does
the resolver resort to using records for the zone from its
stale cache (stale records). This modification implies that
DNS resolvers store the part of the global DNS database
that has been accessed by them and use it when the rele-
vant DNS servers are unavailable. Consequently, while
attackers may be able to flood nameservers and over-
whelm them, resolvers would still have the stale records
to rely upon and hence, DNS availability would be less
critical that it is today. We show that the stale cache can
be maintained on the disk and hence, our proposal boils
down to using disk-space at the resolvers to negate the
impact of DoS attacks. Further, our scheme has a number
of practical advantages with regards to protection against
such attacks; we discuss these in section 3.1.

On the flip side, our proposal changes DNS seman-
tics. For example, zone owners cannot expect the records
served by their nameservers to be completely evicted by
all resolvers within one TTL period. We analyze prob-
lems that may arise due to such semantic changes; the
impact of this and other drawbacks of our scheme are
discussed in section 3.2. This analysis leads us to con-
clude that the scheme does not adversely impact any of
the fundamental DNS characteristics such as the auton-
omy of zone owners. Hence, we believe that the proposed
resolver modification represents a very simple and prac-
tical candidate for alleviating the impact of DoS attacks
on DNS.

2 A SIMPLE IDEA

2.1 DNS Resolvers Today

Clients rely on DNS primarily to map service names
to the IP addresses of the corresponding servers. Typi-
cally, clients issue their queries to a local DNS resolver
which maps each query to a matching resource record
set (hereon simply referred to as a matching record) and
returns it in the response.2 Each record is associated
with a time-to-live (TTL) value and resolvers are allowed
to cache a record till its TTL expires; beyond this, the
record is evicted from the cache. Given a query to re-
solve, a resolver executes the following actions3:

2Note that the matching record may not answer the query; for ex-
ample, it may reflect an error condition due to which the query cannot
be answered. Hence, the term “response” includes both positive and
negative responses.

3This is a simplification of the algorithm used by resolvers but suf-
fices for the purpose of exposition. See [10] for a more detailed version.

1. Look up the cache for a matching record. If a match-
ing record is found, it is returned as the response.

2. If a matching record is not found in the cache, the
resolver uses the DNS resolution process to obtain
a matching record. This involves:

(a) Determine the closest zone that encloses the
query and has its information cached (if no
such zone is cached, the enclosing zone is
the root zone and the resolver resorts to
contacting the DNS root-servers). For exam-
ple, given an A record query for the name
www.cs.cornell.edu, the resolver determines
if records regarding the authoritative name-
servers for the zones .cs.cornell.edu, or .cor-
nell.edu, or .edu (in that order) are present in
its cache.

(b) Starting from the closest enclosing zone, tra-
verse down the DNS zone hierarchy by query-
ing subsequent sub-zones until the zone re-
sponsible for authoritatively answering the
original query is reached or an error response
from a zone’s nameservers implies that the
traversal cannot proceed. In either case, the re-
solver returns the appropriate response to the
client. Also, all responses (including negative
responses indicating error) during this resolu-
tion process are cached by the resolver.

3. In case the resolution process in (2.b) fails due to
the inability of the resolver to contact all the name-
servers of the relevant zone at any step of the traver-
sal, return a response indicating the failure. Note
that the term “failure” refers only to the scenario
when the traversal is not completed due to the un-
availability of the nameservers of a zone.

2.2 Proposed Resolver Modification

We consider DoS attacks on DNS servers where attack-
ers flood the nameservers of a zone to disrupt the resolu-
tion of records belonging to the zone and consequently,
any of its sub-zones. In general, flooding attacks aimed at
denying service to clients take advantage of the skewed
distribution of functionality between clients and servers.
In the case of DNS, the fact that the nameservers for a
zone are completely responsible for serving the zone’s
records and in turn, for the operation of any sub-zones
implies that their availability is critical and makes them
an attractive target for flooding attacks.

Changing the caching behavior of DNS resolvers so
that they shoulder more of the resolution burden, es-
pecially when nameservers are unavailable, is possible
within the existing DNS framework. To this effect, DNS
resolvers should store the responses of the queries they

268 A Simple Approach to DNS DoS Mitigation

resolve beyond the TTL values associated with the re-
spective responses and use stale information if all the au-
thoritative nameservers for a zone are unavailable. Thus,
the resolvers have the stale information to rely on, in case
the authoritative servers for a zone are overwhelmed due
to a flood of requests. More concretely, we propose the
following change in the operation of DNS resolvers–
Stale Cache: Resolvers do not completely expunge
cached records whose TTL value has expired. Rather,
such records are evicted from the cache and stored in a
separate stale cache. In effect, the stale cache together
with the resolver cache represents the part of the global
DNS database that has been accessed by the resolver.
Resolving Queries: In our proposal, the first two steps
executed by a resolver when resolving a query are the
same as before. Hence, given a query, the resolver at-
tempts to respond to it based on the cached information
or through the resolution process. The third step is mod-
ified as follows:

3) In case the resolution process in (2.b) fails due to
the inability of the resolver to contact all the name-
servers of the relevant zone at any step of the traver-
sal, search the stale cache for the required record.
If such a record is found, the resolution process in
(2.b) can continue based on this stale record.

This modification implies that when (and only when) the
authoritative nameservers for a zone are unavailable, the
resolver can resort to responses from a previously re-
solved query.
Stale Cache clean-up: Existing resolvers cache the re-
sponses to the queries made during the resolution pro-
cess in step (2.b). In our proposal, these responses are
also used to evict the corresponding stale records from
the stale cache. For example, during the resolution of
the A record for the name www.cs.cornell.edu, the re-
solver may query the authoritative nameservers of the
zone .cornell.edu for the authoritative nameservers of
the sub-zone .cs.cornell.edu. When a response contain-
ing records regarding these nameservers is received, it is
cached and is also used to evict any nameserver records
for .cs.cornell.edu present in the stale cache. Note that
this newly cached response will be evicted to the stale
cache upon expiration of its TTL value. Also note that
all responses (including negative responses) are used to
evict the stale cache. For example, a NXDOMAIN re-
sponse from the nameserver for .cornell.edu indicating
that the sub-zone .cs.cornell.edu no longer exists will
also lead to eviction of the existing nameserver record
for .cs.cornell.edu in the stale cache. Hence, this clean-
up process ensures that a record stored in the stale cache
always corresponds to the latest authoritative information
that the resolver received.

2.3 Stale Cache Details

From an implementation point of view, a resolver
can perform steps (2.b) and (3) of the query lookup
concurrently. For instance, continuing the earlier ex-
ample, while the resolver queries the zone .cor-
nell.edu’s nameserver for the nameservers of the sub-
zone .cs.cornell.edu, it can lookup its stale cache for in-
formation regarding the nameservers for .cs.cornell.edu.
As mentioned earlier, the information from the stale
cache is used only if the resolver is unable to contact all
the nameservers for .cornell.edu and hence, the latency
of the stale cache lookup is not critical. Consequently,
the stale cache can be maintained on the resolver’s disk.

Given an estimated size of≈65GB for the global DNS
database [5] and the fact that resolvers maintain the stale
cache on their disk, it is not far fetched to imagine that
resolvers store responses for all queries that they have
issued in their stale cache. In practice, we expect re-
solvers to assign some maximum storage space for the
stale cache and utilize a popularity-based eviction algo-
rithm (for example, LRU) when the space fills up. To
come up with a back of the envelope estimate for the
required storage space, we consider a week-long DNS
trace collected at MIT’s border router by Jung et. al. in
2001 [8]. The trace contained ≈350,000 distinct names.
With an average of 100 bytes for the record(s) of each
name, this would amount to 35MB of data. While DNS
traffic is bound to have increased since the time this trace
was collected, we can safely say that resolvers can store
the responses to all queries made by them for the dura-
tion of a week with a small amount of storage space.

3 DISCUSSION

A more “clean-slate” approach to make the availability
of specific nameservers less critical for the operation of
Internet’s naming system would be to replicate the en-
tire DNS database at all resolvers and have authoritative
nameservers only disseminate the updates for the records
in their zones ([6,9] exemplify two possible approaches
to achieve this). However, apart from the likelihood of
the dissemination process itself being prone to attacks,
any such approach could increase the total DNS over-
head many times over, especially in the face of the use of
DNS for load balancing purposes.

On a more general note, while most of us agree that
DNS is afflicted by a few problems, we think that a ma-
jority of them can be attributed to misconfigurations, im-
proper implementations, violations of best current prac-
tices, or even a lack of motivation to address them and
not to major architectural flaws. For example, problems
regarding high lookup latency can mostly be attributed
to misconfigurations (i.e. broken and inconsistent dele-
gations) [13] and the long timeouts used by resolvers

3HotNetsV Session 4: The Contrarians 69

in case of errors [12]. Consequently, despite a number
of proposals arguing to the contrary [4–6,9,13,15], we
do not see a pressing need for an architectural change.
Guided by this observation, our proposal represents an
exercise in showing how minor operational modifications
can address DNS problems; specifically, modifying the
caching behavior of DNS resolvers can reduce the im-
pact of flooding attacks on DNS.

In the rest of this section we discuss the advantages of
the proposed modification and a few possible objections
to it.

3.1 Pros

DNS Robustness. The proposed modification ensures that
resolvers can respond to queries for a zone even if the
zone’s authoritative nameservers are unavailable, assum-
ing that the resolver has queried the zone at some point
in past and the previous response is present in the stale
cache. DNS’s hierarchical structure entails that almost
all modified resolvers would have information for zones
higher up in the hierarchy, such the DNS root-zone and
the top-level zones, stored in their stale cache. Hence, the
proposal would significantly reduce the impact of DoS
attacks on such zones.

As a matter of fact, popularity of DNS names follows
a zipf-like distribution [8]. Consequently, stale responses
for a large fraction of queries to be issued by a resolver in
the near future should already be present in the resolver’s
stale cache. Thus, having the stale cache in place insures
the resolver (and its clients) from DoS attacks against
DNS nameservers since a large fraction of queries can,
if needed, be answered based on the records in the stale
cache.

Simplicity. The biggest argument in favor of this pro-
posal as a means of increasing DNS robustness is its sim-
plicity. The proposed scheme:

• Does not change the basic protocol operation and
infrastructure; only the caching behavior of re-
solvers is modified.

• Does not impose any load on DNS, since it does not
involve any extra queries being generated.

• Does not impact the latency of query resolution,
since the stale cache is utilized only when the query
resolution fails.

Incremental Deployment. Any single resolver can
adopt the modifications proposed in this paper and
achieve significant protection from attacks against the
DNS servers it and its clients access. Hence, the proposal
can be incrementally deployed.

Motivation for Deployment. Modifying a resolver is
beneficial for the clients being served by the it since the

resolver can resolve queries for zones that have been ac-
cessed by it in the past even if the nameservers for the
zones are not available. Hence, there is motivation for
the resolver operators to switch to the modified resolver.

3.2 Objections

DNS caching semantics and the possibility of obsolete in-
formation being used. The biggest objection against the
proposed modification is that it changes the semantics
of DNS caching. With the current DNS specifications, a
zone operator can expect the records served by the zone’s
authoritative nameservers to be completely expunged by
resolvers within TTL seconds.4 With our proposal, such
records would be evicted to the stale cache. The prob-
lem with such an approach is best explained through an
example. Let’s consider a zone whose records have been
updated. Also, consider a resolver that has accessed the
zone but not since the update and so, its has the zone’s
obsolete records in its stale cache. We don’t place any
bound on the time for which the records can be kept
in the stale cache. So, if the resolver needs to resolve
a query for the zone at a time when all the zone’s au-
thoritative nameservers are unreachable, it would resort
to using the obsolete records present in the stale cache.

The problematic scenario described above arises only
when all the authoritative nameservers for a zone are un-
available. In such a scenario, existing resolvers would
fail to resolve any queries pertaining to the zone or any
of its sub-zones (assuming that the records for the sub-
zones are not present in the resolver cache). For the
modified resolvers, if the resolver has not accessed the
zone since the zone’s records were last updated, it would
use obsolete information. While this is far from perfect,
the small possibility of obsolete information being used
seems like a small price to pay for the robustness offered
by having a stale cache in place. Also, the possibility of
a resolver using obsolete information for a zone is much
less for zones that the resolver frequently accesses.

Further, resolvers may choose to apply the modified
caching scheme to infrastructure records only. Infrastruc-
ture records, as defined by [11], refer to records used to
navigate across delegations between zones and include
the NS records (and the corresponding A records) for
zones. Past studies show that such records change very
infrequently [6,11] and hence, this would further reduce
the possibility of resolvers using obsolete information
while still providing a large robustness gain.

Attackers attempting to force the use of obsolete infor-
mation. Apart from the possibility of obsolete data be-
ing used, there is also the possibility of attackers taking
advantage of the stale cache maintained by resolvers to

4In practice, zone operators need to be more flexible due to a large
number of misbehaving resolvers that disregard TTL values and use ex-
pired records even though the nameservers for a zone are available [22].

470 A Simple Approach to DNS DoS Mitigation

force the use of obsolete data. Attackers may keep track
of updates to the records of a zone and start flooding the
authoritative nameservers for the zone as soon as some
of the records are updated. If the attack overwhelms the
zone’s nameservers, resolvers trying to resolve the zone’s
records would rely on the obsolete data stored in their
stale cache. In effect, attackers can now flood the name-
servers for a zone in order to delay the propagation of up-
dates to the zone’s records for the duration of the attack.
While this is certainly a possibility, we have not been
able to imagine scenarios where this would be worse than
not being able to access the zone at all (which is the case
with the status quo).

Autonomy for zone operators. A related concern is that
the proposed modification would seem to move auton-
omy away from zone operators to resolver operators. Al-
lowing resolvers to store records after their TTL value
has expired suggests that zone operators do not control
the access to their sub-zones; for instance, they could not
kill off their sub-zones when they wish to.

However, this is not the case. The fact that we don’t
modify DNS’s hierarchical resolution process implies
that resolvers still need to go through the nameservers
for a zone in order to access its sub-zones and hence,
the autonomy of zone operators is not affected. For in-
stance, let’s assume that the operator for the zone .cor-
nell.edu needs to kill off the sub-zone .cs.cornell.edu.
Typically, this would involve zone .cornell.edu’s opera-
tor configuring the zone’s authoritative nameservers to
respond to any queries regarding .cs.cornell.edu with
a NXDOMAIN, implying that no such domain exists.
Consequently, a resolver trying to resolve a query like
the A record for www.cs.cornell.edu by traversing down
the DNS zone hierarchy would receive a NXDOMAIN
response from one of the nameservers for .cornell.edu
and would forward this to the client that originated the
query. Further, this response would be cached and even-
tually be evicted to the stale cache. Thus, if there are any
such future queries at a time when all nameservers for
.cornell.edu are unavailable, the resolver would still re-
turn a NXDOMAIN response.

Resolution latency in the face of an attack. In our
proposal, if a resolver is unable to reach the authorita-
tive nameservers of a zone, it resorts to using the zone’s
records in the stale cache. Consequently, the resolver
must query each of the nameservers for the zone, wait
for the query to timeout (and possibly retry) before it can
use the stale cache. With the current timeout values used
by resolvers, this would entail a high lookup latency in
the face of attacks (i.e. when the nameservers for a zone
are unavailable). For example, the default configuration
for the BIND8 resolver [21] involves sending queries to
each nameserver for 30 seconds with an exponentially
increasing period between consecutive retries. So, clients

accessing a zone with two authoritative nameservers at a
time when both of them are unavailable would need to
wait for 60 seconds before receiving a reply. However,
most resolvers allow the retry and timeout values to be
configured and hence, the lookup latency problem can be
solved by using aggressive values for these timers. As a
matter of fact, past work has already suggested that these
timer values are major contributors to the high lookup
latency when errors are encountered [12].

DoS’ing the application servers. The proposed modi-
fication does not reduce the vulnerability of nameservers
to DoS attacks. Consequently, attackers can still flood
them so that they are unable to serve (and update) the
records of the corresponding zones. Rather, the modifica-
tion makes the availability of DNS nameservers less crit-
ical and hence, significantly reduces the impact of DoS
attacks on DNS.

Further, the proposal does not address the general DoS
problem and attackers can deny service to clients by at-
tacking the application servers instead of the correspond-
ing DNS nameservers. As a matter of fact, a flooding
attack that chokes the network bottleneck for a zone’s
nameservers is also likely to hamper the availability of
the zone’s application servers. In such a scenario, there
isn’t much value to being able to resolve the names for
the application servers since clients would not be able to
reach them anyway.5 In effect, this concern boils down to
how common is it for application servers and their name-
servers to share a network bottleneck. We intend to mea-
sure this for nameservers on the Internet as part of our
future work.

Interaction with DNSSec. The proposal does not
have any harmful interactions with or implications for
DNSSec. In case the resolver cannot reach the name-
servers of a zone and relies on the corresponding records
in the stale cache, the records ought to be classified as
“Undetermined” by the resolver.6 Hence, any DNSSec
policies expressed by the resolver operator for undeter-
mined records naturally apply to the stale records.

4 RELATED WORK

A number of recent efforts [4–6,13,15] have proposed
new architectures for the next generation Internet naming
system that address DNS’s performance and robustness
problems. Balakrishnan et. al. [1] propose to replace the
hierarchical DNS (and URL) namespace with flat iden-
tifiers. We show that a minor operational change to re-
solvers in the existing DNS framework can significantly
mitigate the impact of DoS attacks on DNS.

5Note that there is still a lot of value to being able to access the
sub-zones when a zone’s nameservers are being flooded. For example,
being able to access the rest of the name system when the root-servers
are being flooded.

6Undetermined records correspond to records resulting from a non-
DNSSec lookup [20].

5HotNetsV Session 4: The Contrarians 71

Pappas et. al. [11] argue for the use of long TTL val-
ues for infrastructure DNS records as a means of alle-
viating the impact of DoS attacks on DNS. We share
with their proposal the basic notion of using records al-
ready present in the resolver cache for a longer period.
While our proposal involves changing the caching be-
havior of resolvers, using longer TTL values for a zone’s
records involves a minor configuration change at the
zone’s nameservers and hence, does not necessitate any
software update. However, using long TTL values does
not completely offset the impact of DoS attacks (since a
fraction of the records still expire at any given time) and
makes it harder for operators to update their records.

Cohen and Kaplan [3] propose the use of stale DNS
records for improving DNS performance. This involves
fetching data based on the stale records and issuing a
DNS query to refresh the stale record concurrently. As
a contrast, we argue for the use of a zone’s stale records
only in case all nameservers for the zone are unavailable.
CoDNS [12] is a cooperative DNS lookup service de-
signed to alleviate client-side DNS problems. We share
with their proposal the notion of client-side (i.e. resolver-
side) changes to address DNS problems. While CoDNS
involves resolvers co-operating amongst each other to
mask resolver-side issues, we propose that resolvers use
their disk-space to insure themselves (and their clients)
against DoS attacks on DNS.

5 FUTURE WORK

This paper presents a very simple modification to the
caching behavior of DNS resolvers. While the impact of
changing a resolver on the resolver’s ability to cope with
DoS attacks on nameservers is pretty obvious, we would
like to use real-world traces to quantify this impact. To
this effect, we are in the process of obtaining traces col-
lected at DNS resolvers and aim to determine the impact
of different kind of attacks. For example, assuming an
attack that takes down the DNS root-servers, how many
queries for a typical resolver will fail, how many will use
obsolete information (in case the nameservers for one of
the TLDs changes during the attack), and how many will
benefit from having the stale cache in place?

We also aim to implement this modification into com-
mon DNS resolvers (for example, BIND, DBJDNS, etc.)
or even as an add-on to the CoDNS resolution ser-
vice [12] running on PlanetLab [2]. Apart from clearing
up the implementation issues, such an exercise would
help us analyze the advantages of maintaining a stale
cache in the face of actual attacks (which occur fre-
quently enough to make this exercise worthwhile!).

ACKNOWLEDGEMENTS

We would like to thank Paul Vixie at ISC for helpful dis-
cussions on why this proposal should “not” be incorpo-

rated in DNS resolvers; most of the objections discussed
in section 3.2 arose during exchanges with him.

REFERENCES

[1] BALAKRISHNAN, H., LAKSHMINARAYANAN, K., RAT-
NASAMY, S., SHENKER, S., STOICA, I., AND WALFISH, M.
A Layered Naming Architecture for the Internet. In Proc. of
ACM SIGCOMM (2004).

[2] CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A., PETER-
SON, L., WAWRZONIAK, M., AND BOWMAN, M. PlanetLab:
An Overlay Testbed for Broad-Coverage Services. ACM SIG-
COMM Computer Communication Review 33, 3 (July 2003).

[3] COHEN, E., AND KAPLAN, H. Proactive caching of dns
records: Addressing a performance bottleneck. In Proc. of Sym-
posium on Applications and the Internet (2001).

[4] COX, R., MUTHITACHAROEN, A., AND MORRIS, R. T. Serv-
ing DNS using a Peer-to-Peer Lookup Service. In Proc. of
IPTPS (2002).

[5] DEEGAN, T., CROWCROFT, J., AND WARFIELD, A. The Main
Name System: An Exercise in Centralized Computing. SIG-
COMM Comput. Commun. Rev. 35, 5 (2005).

[6] HANDLEY, M., AND GREENHALGH, A. The Case for Pushing
DNS. In Proc. of Hotnets-IV (2005).

[7] HARDY, T. RFC 3258 - Distributing Authoritative Name
Servers via Shared Unicast Addresses, April 2002.

[8] JUNG, J., SIT, E., BALAKRISHNAN, H., AND MORRIS, R.
DNS performance and the effectiveness of caching. IEEE/ACM
Trans. Netw. 10, 5 (2002).

[9] KANGASHARJU, J., AND ROSS, K. W. A Replicated Archi-
tecture for the Domain Name System. In Proc. of INFOCOM
(2000).

[10] MOCKAPETRIS, P. RFC 1035, DOMAIN NAMES - IMPLE-
MENTATION AND SPECIFICATION, Nov 1987.

[11] PAPPAS, V., ZHANG, B., OSTERWEIL, E., MASSEY, D., AND

ZHANG, L. Improving DNS Service Availability by Using Long
TTLs. draft-pappas-dnsop-long-ttl-02, June 2006.

[12] PARK, K., PAI, V., PETERSON, L., AND WANG, Z. CoDNS:
Improving DNS Performance and Reliability via Cooperative
Lookups. In Proc. of USENIX OSDI (2004).

[13] RAMASUBRAMANIAN, V., AND SIRER, E. G. The Design and
Implementation of a Next Generation Name Service for the In-
ternet. In Proc of ACM SIGCOMM (2004).

[14] RAMASUBRAMANIAN, V., AND SIRER, E. G. Perils of Tran-
sitive Trust in the Domain Name System. In Proc. of ACM SIG-
COMM IMC (2005).

[15] THEIMER, M., AND JONES, M. B. Overlook: Scalable name
service on an overlay network. In Proc. of ICDCS (2002).

[16] Microsoft DDoS Attack, NetworkWorld, Jan 2001.
http://www.networkworld.com/news/2001/
0125mshacked.html.

[17] Root Server DDoS Attack, RIPE Mail Archive, Nov
2002. https://www.ripe.net/ripe/maillists/
archives/eof-list/2002/msg00009.html.

[18] Akamai DDoS Attack, Internet Security News, Jun 2004.
http://www.landfield.com/isn/mail-archive/
2004/Jun/0088.html.

[19] UltrDNS DDoS Attack, Washington Post, May 2005. http:
//blog.washingtonpost.com/securityfix/
2006/05/blue security surrenders but s.html.

[20] CISCO DNSSEC page, Aug 2006. http://www.cisco.
com/web/about/ac123/ac147/archived issues/
ipj 7-2/dnssec.html.

[21] Internet Systems Consortium, Aug 2006. http://www.isc.
org/.

[22] SLASHDOT: Providers Ignoring DNS TTL?, Aug 2006.
http://ask.slashdot.org/article.pl?sid=05/
04/18/198259&tid=95&tid=128&tid=4.

672 A Simple Approach to DNS DoS Mitigation

