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Abstract

Prefix hijacking is one of the top known threats on to-

day’s Internet. A number of measurement based so-

lutions have been proposed to detect prefix hijacking

events. In this paper we take these solutions one step fur-

ther by addressing the problem of locating the attacker in

each of the detected hijacking event. Being able to locate

the attacker is critical for conducting necessary mitiga-

tion mechanisms at the earliest possible time to limit the

impact of the attack, successfully stopping the attack and

restoring the service.

We propose a robust scheme named LOCK, for LO-

Cating the prefix hijacKer ASes based on distributed In-

ternet measurements. LOCK locates each attacker AS

by actively monitoring paths (either in the control-plane

or in the data-plane) to the victim prefix from a small

number of carefully selected monitors distributed on the

Internet. Moreover, LOCK is robust against various

countermeasures that the hijackers may employ. This is

achieved by taking advantage of two observations: that

the hijacker cannot manipulate AS path before the path

reaches the hijacker, and that the paths to victim prefix

“converge” around the hijacker AS. We have deployed

LOCK on a number of PlanetLab nodes and conducted

several large scale measurements and experiments to

evaluate the performance. Our results show that LOCK

is able to pinpoint the prefix hijacker AS with an accu-

racy up to 94.3%.

1 Introduction

The Internet consists of tens of thousands of Au-

tonomous Systems (ASes), each of which is an indepen-

dently administrated domain. Inter-AS routing informa-

tion is maintained and exchanged by the Border Gate-

way Protocol (BGP). The lack of adequate authentication

schemes in BGP leaves an opportunity for misbehaving

routers to advertise and spread fabricated AS paths for

targeted prefixes. Originating such a false AS path an-

nouncement is referred to as “prefix hijacking”. Once a

BGP router accepts such a false route and replaces a le-

gitimate route with it, the traffic destined for the target

prefix can be redirected as the hijacker wishes. The vic-

tim prefix network of a successful hijacking will experi-

ence performance degradation, service outage, and secu-

rity breach. The incident of the prefix of YouTube being

hijacked by an AS in Pakistan for more than 2 hours [1]

is just a recent and better known reminder of the possi-

bility of real prefix hijacking attacks.

Recently proposed solutions for combating prefix hi-

jacking either monitor the state of Internet and detect on-

going hijacking events [12, 21, 22, 26, 34, 45], or attempt

to restore service for victim prefix networks [42]. Both

approaches are compatible with existing routing infras-

tructures and generally considered more deployable than

another family of proposals (e.g., [4, 8, 11, 13, 18, 19, 27,

32,35–37,44]) which aim at prefix hijacking prevention,

because the latter usually require changes to current rout-

ing infrastructures (e.g., router software, network opera-

tions), and some also require public key infrastructures.

However, the aforementioned detection and service

restoration solutions only solve parts of the problem and

a critical step is still missing towards a complete and au-

tomated detection-recovery system. That is how to locate

the hijackers. More importantly, the location of hijackers

is one of the key information that enables existing miti-

gation methods against prefix hijacking (e.g., [42]). One

may consider this step trivial. Indeed in current prac-

tice this step is actually accomplished by human inter-

actions and manual inspections of router logs. However,

we would argue that the success of the current practice is

due to the fact that discovered attacks so far are still prim-

itive. Many of them are simply not attacks but rather the

results of router mis-configurations. As we will elabo-

rate, locating sophisticated hijackers is far from a trivial

problem and the current practice will have great difficul-

ties in locating them.



In this paper, we present a scheme called LOCK to

LOCate prefix hijacKers. It is a light-weight and incre-

mentally deployable scheme for locating hijacker ASes.

The main idea behind LOCK are based the following

two observations: that the hijacker cannot manipulate

AS path before the path reaches the hijacker, and that

the paths to victim prefix “converge” around the hijacker

AS. Our contributions are four-fold. First, to the best

of our knowledge, it is the first work studying the at-

tacker locating problem for prefix hijacking, even when

countermeasures are engaged by the hijacker. Second,

our locating scheme can use either data-plane or control-

plane information, making the deployment more flexible

in practice. Third, we propose an algorithm for selecting

locations where data-plane or control-plane data are col-

lected such that the hijackers can be more efficiently lo-

cated. Finally, we have deployed LOCK on a number of

PlanetLab nodes and conducted several large scale mea-

surements and experiments to evaluate the performance

of LOCK against three groups of hijacking scenarios:

synthetic attacks simulated using real path and topology

information collected on the Internet, reconstructed pre-

viously known attacks, and controlled attack experiments

conducted on the Internet. We show that the proposed ap-

proach can effectively locate the attacker AS with up to

94.3% accuracy.

The rest of the paper is organized as follows. Section

2 provides background information on prefix hijacking.

Section 3 provides an overview of the framework of our

LOCK scheme. Then we describe detailed monitoring

and locating methodologies in Section 4 and Section 5

respectively. Section 6 evaluates the performance of the

LOCK scheme. Section 7 briefly surveys related works

before Section 8 concludes the paper.

2 Background

As mentioned before, IP prefix hijacking occurs when

a mis-configured or malicious BGP router either origi-

nates or announces an AS path for an IP prefix not owned

by the router’s AS. In these BGP updates the misbehav-

ing router’s AS appears very attractive as a next hop for

forwarding traffic towards that IP prefix. ASes that re-

ceive such ill-formed BGP updates may accept and fur-

ther propagate the false route. As a result the route entry

for the IP prefix in these ASes may be polluted and traffic

from certain part of the Internet destined for the victim

prefix is redirected to the attacker AS.

Such weakness of the inter-domain routing infrastruc-

ture has great danger of being exploited for malicious

purposes. For instance the aforementioned misbehaving

AS can either drop all traffic addressed to the victim pre-

fix that it receives and effectively perform a denial-of-

service attack against the prefix owner, or redirect traf-

fic to an incorrect destination and use this for a phish-

ing attack [28]. It can also use this technique to spread

spams [33].

We refer to this kind of route manipulation as IP pre-

fix hijack attacks and the party conducting the attack

hijacker or attacker. Correspondingly the misbehaving

router’s AS becomes the hijacker AS, and the part of the

Internet whose traffic towards the victim prefix is redi-

rected to the hijacker AS is hijacked. So do we call the

data forwarding paths that are now altered to go through

the hijacker AS hijacked. We also refer to the victim pre-

fix as the target prefix.

Following the convention in [45], we classify prefix

hijacks into the following three categories:

• Blackholing: the attacker simply drops the hijacked

packets.

• Imposture: the attacker responds to senders of the

hijacked traffic, mimicking the true destination’s

(the target prefix’s) behavior.

• Interception: the attacker forwards the hi-

jacked traffic to the target prefix after eavesdrop-

ping/recording the information in the packets.

While the conventional view of the damage of prefix hi-

jacking has been focused on blackholing, the other two

types of hijacking are equally important, if not more

damaging [6]. In addition, the characteristics of different

hijack types are different, which often affect how differ-

ent types of attacks are detected. In this paper, we use

the term hijack to refer to all three kinds of prefix hijack

attacks unless otherwise specified.

There have been a number of approaches proposed for

detecting prefix hijacks. They utilize either information

in BGP updates collected from control plane [21, 22, 26,

34], or end-to-end probing information collected from

data plane [43, 45], or both [6, 12, 36]. We will not get

into the details of most of these approaches here because

LOCK is a hijacker-locating scheme, not a hijack detec-

tion scheme. The difference between these two will be

explained later in section 3.1. To locate a hijacker, the

LOCK scheme only needs to know whether a given pre-

fix is hijacked. Therefore LOCK can be used together

with any detection method to further locate the hijacker

AS. Moreover, LOCK can locate the hijacker using ei-

ther data-plane or control-plane information.

3 Framework

In this section, we present an overview of key ideas of the

hijacker locating algorithm in LOCK. Similar to detect-

ing prefix hijacking, locating hijacker AS can be done in

either control-plane or data-plane. Either way, the goal



is, to use the AS path information to the hijacked prefix

observed at multiple and diverse vantage points (or mon-

itors) to figure out who the hijacker is. In control-plane

approach, the AS path information is obtained from BGP

routing tables or update messages. In data-plane ap-

proach, the AS path is obtained via AS-level traceroute

(mapping the IP addresses in traceroute to AS numbers).

Both methods have pros and cons. Realtime data-

plane information from multiple diverse vantage points is

easier to be obtained than realtime BGP information(e.g.

the BGP updates from [3] are typically delayed for a few

hours). On the other hand, it is relatively easier for the

attacker to manipulate the data-plane AS path to coun-

termeasure the locating algorithm than the control-plane

AS path. LOCK can use either data-plane or control-

plane AS paths to locate the hijackers.

3.1 Challenges

Currently, the most commonly used hijacker-locating ap-

proach (called simple locating approach) is to look at the

origin ASes of the target prefix. For example, Figure 1

(a) shows the control-plane AS path information to tar-

get prefix p at vantage points M1, M2, and M3, respec-

tively, before hijacker H launches the hijack. All three

vantage points observe the origin AS is T . In Figure 1

(b), Hijacker AS H announces a path H to target pre-

fix p, which ASes A, B, M1, and M2 accept since the

paths via H are better than their previous ones via CDT .

In this case, the simple locating approach can easily iden-

tify the newly-appearing origin AS H as the hijacker.

However, this simple locating approach can fail even

without any countermeasures by the hijackers. For ex-

ample, in Figure 1(c), hijacker H pretends there is a link

between H and the target AS T , and announces an AS

path HT , again accepted by A,B,M1, and M2. The

simple locating approach does not work here since the

origin AS in all the AS paths are still T .

One might try to look beyond just origin AS and check

other ASes in the path, but the hijacker AS might counter

this such that the hijacker AS might not even appear in

any of the AS paths. For example, in Figure 1(d) H sim-

ply announces an AS path T without prepending its own

AS number H 1.

Above challenges in control-plane locating ap-

proaches also exist in data-plane approaches. Almost

all data-plane path probing mechanisms are derived from

the well known traceroute program. In traceroute, trig-

gering messages with different initial TTL values are sent

towards the same destination. As these messages are for-

warded along the path to this destination, as soon as a

message’s TTL reduces to zero after reaching a router,

the router needs to send back an ICMP Timeout message

to notify the probing source. If the triggering messages

go through the hijacker, this happens when the trigger-

ing messages’ initial TTL values are greater than the hop

distance from the probing source to the hijacker, the hi-

jacker can do many things to interfere the path probing

as a countermeasure to the locating algorithm.

In Figure 2(a), the hijacker AS’s border router re-

sponds to traceroute honestly in blackholing (in which

for example the border router responds with a no route

ICMP message with its own IP address) and imposture

(in which for example a router in H responds “destina-

tion reached” message with its own IP address). In either

case, the router address belongs to H and maps to AS H ,

and the simple locating approach can identify H as the

newly appearing origin AS hence the hijacker AS.

However, in the interception attack shown in Fig-

ure 2(b), the hijacker further propagates the traceroute

probe packets to the target via XY ZT , thus the origin

AS is still H . Hence the simple locating approach fails

in this case.

Furthermore, the hijacker can use various countermea-

sures. For instance, the hijacker may simply drop the

triggering messages without replying to interrupt tracer-

oute probing from proceeding further. Or it may send

back ICMP Timeout messages with arbitrary source IP

addresses to trick the probing source into thinking routers

of those addresses are en route to the destination. The hi-

jacker may even respond with ICMP Timeout messages

before the triggering messages’ TTL values reach zero.

In Figure 2 (c), hijacker H manipulates the traceroute

response such that after the IP-to-AS mapping, the AS

path appears to M1 to be ACDT , and appears to M2 to

be BDT , neither of which contains hijacker AS H in it,

making the hijacker locating difficult. We refer to above

manipulation of traceroute response as countermeasure

for data-plane locating approach, and call such hijackers

countermeasure-capable or malicious.

In summary, sophisticated hijackers that are capable of

engaging countermeasures can inject false path informa-

tion into measurements collected in both control plane

and data plane, easily evading simple hijacker-locating

mechanisms. We therefore design a more effective algo-

rithm for locating these hijackers in the next section.

3.2 Locating Hijackers

The basic idea of LOCK is based on two key observa-

tions, which apply to both data-plane and control-plane

approaches, different types of hijacks (blackholing, im-

posture, and interception), and with or without counter-

measures by the attackers.

The first observation is that the hijacker cannot ma-

nipulate the portion of the AS path from a polluted van-

tage point to the upstream (i.e., closer to the vantage

point) neighbor AS of the hijacker AS. For example, in
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Figure 2: Data plane examples

Figures 1(c) and (d) and Figures 2 (b) and (c), for the

polluted vantage points M1 and M2, the upstream ASes

for hijacker AS H are A and B, and the portion of AS

path M1A and M2B are trustworthy. This is easy to

understand since the routers from the vantage points to

hijacker upstream ASes are all well-behaving ones thus

conform to BGP protocol in control-plane and ICMP

protocol used in traceroute in data-plane.

The second observation is that the trustworthy portion

of polluted AS paths from multiple vantage points to a

hijacked victim prefix “converge” “around” the hijacker

AS. This is also intuitive since, if the set of monitors are

topologically diverse enough, the trustworthy portion of

AS paths from all the polluted monitors to the target pre-

fix must include the upstream AS neighbors of the hi-

jacker AS (e.g. in Figure 1(d), and Figure 2 (c)) thus

converge “around” the hijacker AS, or directly converge

at hijacker AS (e.g. in Figure 1(b) and (c) and Figure 2(a)

and (b)).

Since we do not know beforehand the hijack scenarios

and whether there is any countermeasure, we focus on

identifying these upstream neighbors of the hijacker AS,

and then intuitively hijacker should be within the inter-

section of the 1-hop neighbor sets of the hijacker’s neigh-

bors. And chances are that the size of the intersection set

is very small if the monitors have diversified locations.

The neighbor sets of a given AS can be obtained from

a daily snapshot of the state-of-arts AS level topology

repository such as [16].

For example, in both Figures 1 and 2, ideally sup-

pose we know that ASes A, B (which are on the pol-

luted paths from vantage points M1 and M2, respec-

tively) are the upstream neighbors of the hijacker. We

can then infer that the hijacker AS should be within

the intersection of neighorset(A) = {M1, B,H} and

neighborse(B) = {M2, A,H}, which is H . Of course

in reality LOCK does not know beforehand which ASes

are the upstream neighbors of the hijackers, thus each

AS in a polluted path can potentially be such a neighbor

of the hijacker AS. And hence the hijacker could be a

neighbor of any of these nodes. We therefore put all the

neighbors of each AS on a polluted path together with

the path nodes themselves to form a neighborhood set of

the polluted path. The hijacker should be included in this

neighborhood set.

For reasons that we will explain in the Section 5, in-

stead of using the neighborhood set of an arbitrary path,

LOCK conservatively starts from the union of all the

neighborhood sets of all polluted paths, H. Then given

that all polluted paths go through a neighbor AS of the hi-

jacker, an AS which appears in more neighborhood sets

is more likely to be the hijacker. We thus “rank” the ASes

within H based on how many neighborhood sets an AS

is in to narrow down to the handful of top ranked ASes.



Also when there are multiple convergence points, the ear-

liest convergence point is more likely to be the hijacker

than the later ones. More detailed ranking algorithm will

be presented in Section 5.

As shown in this section, LOCK can utilize either

control-plane or data-plane information. However, for

the ease of presentation and due to space limitation, in

the rest of paper we focus on data-plane approach unless

otherwise specified.

4 Monitor Selection

LOCK operates in a distributed fashion from a number

of monitors on the Internet. Both the number of moni-

tors and locations of these monitors affect the accuracy in

locating prefix hijackers. In general, the more monitors

used by LOCK, the higher accuracy LOCK can achieve

in locating prefix hijackers, and the more measurement

overhead are incurred by LOCK. More importantly, the

measurement overhead increase linearly as the number

of monitors increases, while at the same time the im-

proved accuracy gained by each additional monitor can

gradually diminish. Therefore, it is hopeful to achieve

very good accuracy with a limited number of carefully

selected monitors.

In this section, we present a novel algorithm for select-

ing a number of monitors from a candidate set. In par-

ticular, we model the monitor selection problem as fol-

lows. Initially, we have M candidate monitors around the

world. For each target prefix, we select a subset m mon-

itors among the M candidates. In order to achieve the

highest possible hijacker-locating accuracy with a lim-

ited number of monitors, the selection of monitors should

be guided by two objectives: (i) maximize the likelihood

of observing hijacking events on the target prefix; and (ii)

maximize the diversity of paths from monitors to the tar-

get prefix so that a hijacking event can be observed from

multiple distinct vantage points.

Our monitor selection algorithm consists of three

steps:

1. Clustering: The M candidate monitors are grouped

into m clusters. Monitors in the same cluster have

more similar paths to the target prefix than those in

different clusters.

2. Ranking: Candidate monitors in each cluster are

ranked based on probability of their paths to the

target prefix being polluted when the prefix is hi-

jacked. The monitors with higher ranks are more

likely to observe the hijacking event.

3. Selecting: The monitor which ranks the highest in

each cluster is chosen to monitor the target prefix.

Thus, a total of m monitors are selected for each

target prefix.

4.1 Clustering

For a given target prefix, the candidate monitors are clus-

tered based on similarity of their AS-level paths to the

prefix. We measure the similarity between a pair of paths

as the number of common ASes between these two paths

over the length of the shorter path. If there is no com-

mon AS, the similarity score is 0. On the other hand, if

the two paths are identical or one path is a sub-path of

the other, the similarity score is 1. We also define the

similarity between two clusters of paths as the maximum

similarity between any two paths, one from each cluster.

We model the clustering part as a hierarchical clus-

tering problem. Such problems have well-known algo-

rithms, such as [17], that are polynomial-time complex.

In this paper, we adopt the following simple clustering

algorithm2. First, we start from M clusters, with one

candidate site in each cluster, and compute similarity

score for each pair of clusters. Second, we identify the

pair of clusters with the largest similarity score among

all pairs of clusters, and merge these two clusters into a

single cluster. Third, we recompute the similarity score

between this newly-formed cluster with each of the other

clusters. We repeat steps two and three until only m clus-

ters remain.

4.2 Ranking

We rank candidate monitors in each cluster based on their

likelihood of observing hijacking events on the target

prefix t (i.e., the path from monitor to target prefix is pol-

luted by hijacking). For a given candidate site s, whether

or not the route from s to t is polluted by hijacker h
depends on the original best route (before the hijacking

happens) from s to t and the fake route announced by h.

This has been demonstrated by previous analysis in [6].

We assume that “prefer customer route” and “valley-

free routing” are commonly adopted interdomain routing

policies on today’s Internet. We denote the original best

route from s to t as a “customer-route”, a “peer-route”, or

a “provider-route” if the next-hop AS on the route from s
to t is a customer, a peer, or a provider of the AS to which

s belongs, respectively. According to the interdomain

routing policies, a customer-route would be the most

preferable and a provider-route would be the least prefer-

able by each router; similarly, when policy preferences

are equal, the route with shorter AS path is more prefer-

able [10]. Therefore, when hijacker h announces a fake

path, the monitor whose original best route is provider-

route is more likely to be polluted than a original route

of peer-route, which in turn is more likely to be polluted



Algorithm 1: Ranking monitors in each cluster

foreach monitor i in the cluster1

if provider-route R[i] = 300; /* Assign the2

ranking. The larger the number is, the higher the

rank is. */

elseif peer-route R[i] = 200;3

else R[i] = 100;4

R[i]+ = D(i, t); /* Add the AS-level distance */5

than a original route of customer-route; when the policy

preferences are equal, the monitor whose original best

route has a longer AS path to t is more likely to be pol-

luted than the one whose original best route has a shorter

AS path (Please refer to Table 1 of [6] for detailed anal-

ysis). Our ranking algorithm is shown in Algorithm 1.

Note that establishing AS topology itself is a challeng-

ing problem. We use most advanced techniques [30] to

infer the AS relationship. Admittedly, inferred results

could be incomplete. However, the evaluation part will

show that the ranking algorithm based on such data can

still achieve high location accuracy.

5 Hijacker-Locating Algorithm

LOCK locates hijacker AS based on AS paths from a set

of monitors to the victim prefix. The AS path from a

monitor to the victim prefix can be either obtained from

the control plane (e.g., BGP AS path) or from the data

plane (e.g., traceroute path). In the latter case, LOCK

will need to pre-process the path and compute the corre-

sponding AS path (described in Section 5.1).

5.1 Pre-Processing

When a prefix is hijacked, a portion of the Internet will

experience the hijack. Traffic originated from this por-

tion of the Internet and destined for the hijacked pre-

fix will be altered to go through the hijacker. Moni-

tors deployed in this affected portion of the Internet can

observe that their monitor-to-prefix paths being altered.

These monitor-to-prefix paths are the foundation of our

hijacker-locating algorithm. Only paths changed by the

hijack event should be supplied to the hijacker-locating

algorithm. Methods such as the one outlined in [45] help

separate real hijack induced path changes from changes

caused by other non-hijack reasons.

If the monitor-to-prefix path is obtained from the data

plane, then LOCK pre-processes the path in the follow-

ing way. The most common tool for acquiring IP for-

warding path in the data plane is the well known tracer-

oute program. This program sends out a series of trig-

gering packets with different initial TTL values to trig-

ger the routers en route to the destination to return ICMP

Timeout messages as soon as they observe a triggering

message’s TTL value reaching 0, hence revealing these

routers’ identities. These traceroute results are router-

level paths and they need to be converted to AS-level

paths. During this conversion, NULL entries in tracer-

oute results are simply discarded. This simplification

rarely has any effect on the resulted AS path because as

traceroute proceeds within a particular AS, only if all

routers in this AS failed to show up in traceroute results

our results may be affected, which we have found this

to be very rare. These resulting AS paths are known as

the “reported paths” by the monitors in the rest of the

section.

We use publicly available IP to AS mapping data pro-

vided by the iPlane services [15] to convert router IP ad-

dresses to their corresponding AS numbers. It is known

that accurately mapping IP addresses to AS numbers

is difficult due to problems such as Internet Exchange

Points (IXPs) and sibling ASes [6, 25]. We argue that

the impact of these mapping errors on the results of our

hijacker-locating algorithm is minor. Firstly the distribu-

tion of the nodes, either routers or ASes, that may cause

any mapping error in their corresponding Internet topolo-

gies, either router level or AS level, is sparse. If our paths

do not contain these problematic nodes, our results are

not affected by mapping errors. Secondly, it will become

apparent, as more of the details of the hijacker-locating

algorithm are described, that our algorithm is rather ro-

bust against such mapping errors. As long as these errors

do not occur when mapping nodes near the hijacker, they

will not affect the result of our algorithm. It is also worth-

while noting that the IP to AS mapping data do not need

to be obtained from realtime control plane data. That

is, the IP to AS mapping can be pre-computed and stored

since it usually does not change over short period of time.

It is also helpful to perform sanity checks on the AS

paths before we begin the hijacker-locating algorithm.

The hijacker may forge traceroute results if a traceroute

triggering message actually passes through the hijacker.

Since the prefix has been hijacked, triggering messages

with large enough initial TTL values, at least larger than

the hop distance between the probing monitor and the

hijacker, will inevitably pass through the hijacker. For a

sophisticated hijacker, this is a good opportunity to fabri-

cate responses to these triggering messages to conceal its

own identity. As a result, the AS paths mapped from such

a fake traceroute results may contain erroneous ASes as

well. It is easy to see that these “noises” only appear

in the later portion of a path because the portion that is

before the hijacker cannot be altered by the hijacker, –

the ICMP triggering messages do not reach the hijacker.

Hence if a node in a path is determined to be a fake

node, we really do not need to consider any nodes beyond



that point because this point must be already beyond the

hacker’s position in the path.

In the pre-processing part, we consider the duplicated

appearances of AS nodes. If a node appears more than

once in a path, any appearance beyond the first is consid-

ered fake. This is because real traceroute results should

not contain loops.

5.2 Basic Algorithm

We denote the set of monitors that have detected the hi-

jacking and reported their altered monitor-to-prefix paths

by M. For each monitor mi within M, there is an

AS level monitor-to-prefix path Pi, either computed by

pre-processing traceroute path or obtained directly from

BGP routes. We define the neighborhood set of a spe-

cific path Pi, denoted as N (Pi), as the union of all path

nodes and their one-hop neighbors. The target prefix’ AS

should be removed from all N (Pi). The reason is simple,

– it is not the hijacker AS. Note that LOCK computes the

neighborhood set based on AS topology inferred from

RouteView [3] before the hijacking is detected, rather

than real-time BGP data when the hijacking is ongoing.

Though the hijacker can try to pollute the AS topology

information before launching real hijacking attack on the

victim prefix, the impact of such evasion is minimal on

the neighborhood set computation because it is difficult

for hijacker to “remove” an observed true link from the

AS topology by announcing fake routes.

We are interested in the neighborhood sets of the AS

paths instead of just the AS paths themselves because

the hijacker may actually not show up in any of the AS

paths if it manipulates traceroute results. However, even

under this condition the ASes which are immediately

before the hijacker along the paths are real. Thus, the

union of all neighborhood sets of all reported AS paths,

H =
⋃

i
N (Pi), form our search space for the hijacker.

We denote each node in this search space as ak. The

hijacker-locating algorithm is essentially a ranking algo-

rithm which assigns each node in H a rank based on their

suspicious level of being the hijacker.

The LOCK algorithm ranks each AS node ak ∈ H
based on two values, covered count C(ak) and total dis-

tance to monitors D(ak). The covered count is simply

computed by counting ak appearing in how many path

neighborhood sets. For each neighborhood set N (Pi)
that ak is a member, we compute the distance between

ak and the monitor of the path mi, d(mi, ak). This dis-

tance equals to the AS-level hop count from mi to ak

along the path Pi if ak is on the path Pi. Otherwise,

d(mi, ak) equals to the distance from mi to ak’s neigh-

bor, who is both on Pi and the closest to mi, plus 1. If

ak is not a member of a path neighborhood set N (Pi),
the distance d(mi, ak) is set to 0. The total distance to

Algorithm 2: The pseudo-code of locating algorithm

Initializing1

set H, C, D empty;2

Updating3

foreach mi in the monitor set M4

foreach ak ∈ N (Pi)5

if ak ∈ H6

D(ak) += d(mi, ak);7

C(ak) += 1;8

else9

insert ak in H ;10

C(ak) = 0;11

D(ak) = d(mi, ak);12

Ranking13

sort ak ∈ H by C(ak);14

for ak with the same value of C(ak);15

sort ak by D(ak);16

monitors equals to the summation of all d(mi, ak).

After for each ak in H both covered count C(ak) and

total distance to monitors D(ak) are computed, we rank

all nodes in H firstly based on their covered count. The

greater the covered count a node ak has, the higher it is

ranked. Then for nodes having the same covered count,

ties are broken by ranking them based on their total

distance to monitors, –the lower the total distance, the

higher the rank. If there are still ties, node ranks are de-

termined randomly.

Hence, the final result of the locating algorithm is a list

of nodes ak, ordered based on how suspicious each node

is being the hijacker. The most suspicious AS appears

on the top of the list. The pseudo-code of the locating

algorithm is shown in Algorithm 2.

The ranking algorithm described here may seem

overly complicated for finding where the reported paths

converge. However it is designed specifically to be ro-

bust against various measurement errors and possible hi-

jacker countermeasures. One particular reason for this

design is to reduce the effect of individual false paths. If

a monitor-to-prefix path is changed due to reasons other

than being hijacked and the monitor falsely assesses the

situation as hijack, the path reported by this monitor may

cause confusion on where the paths converge. Since it

is difficult to distinguish this kind of paths beforehand,

our algorithm has adopted the approach as described

above to discredit the effect of these individual erroneous

paths. For similar reasons, our ranking algorithm is ro-

bust against the IP-to-AS mapping errors if any.

Another reason for outputting an ordered list is that

there are cases that hijacked paths converge before these

paths reach the hijacker (early converge). This is more



likely to happen when the hijacker is located far away

from the Internet core where the connectivity is rich. In

this case the hijacked paths may converge at an upstream

provider of the hijacker in stead of the hijacker itself.

Although as we will show later these hijacking scenarios

typically have small impacts, in other words the portion

of the Internet that is affected by such hijacks is small;

still we wish to locate the hijacker. A list of suspects

ranked by level of suspicion is well suited for addressing

this issue.

5.3 Improvements

After the suspect list is computed, we can apply addi-

tional post-processing methods to further improve our re-

sults. The basic algorithm is very conservative in the way

that H includes all possible candidates. Now we look

into ways that H may be reduced. The hope is that with

a trimmed suspect set to begin with, the locating algo-

rithm can get more focused on the hijacker by increasing

the rate that the most suspicious node on the list is the hi-

jacker. Both improvements are designed to alleviate the

early converge problem we mentioned before. Note that

the improvements may exclude the real hijacker from the

suspect set, but the evaluation (in Section 6.3.5) shows

that chance is very small.

5.3.1 Improvement One: AS Relationship

In the basic algorithm, we have only taken AS topology

into account. In other words, all topological neighbors

of nodes on a reported AS path are added to the path’s

neighborhood set. In reality, not all physical connections

between ASes are actively used for carrying traffic. In

particular, some connections may be used only for traf-

fic of one direction but not the other. This is largely due

to profit-driven routing policies between different ISPs.

Internet paths have been found to follow the “valley-

free” property [10], i.e. after traversing a provider-to-

customer edge or a peer edge, a path will not traverse

another customer-to-provider path or another peer edge.

If we constrain our suspect set using this AS relationship

based property by removing the neighbors that do not

follow the “Valley-free” property from the neighborhood

set of each reported path, we are able to reduce the size

of the neighborhood set and further on the suspect set H.

One matter needs to be pointed out is that not all links

on the reported paths are necessarily real due to the hi-

jacker’s countermeasures. Since we do not know what

links are fabricated we should not trim the neighborhood

sets too aggressively. We only perform this improvement

on path links that we are reasonably certain that they are

real. In particular, as we know that an attacker cannot

forge path links that are before itself, thus we can rea-

sonably consider that on each reported path the links that

are before the node immediately before the most suspi-

cious node are real, and the trimming is only done on

neighbors of these links.

This AS relationship based improvement is incorpo-

rated into the basic algorithm in an iterative fashion.

We first pre-compute AS relationship information using

method proposed in [10]. Note that this is done offline

and does not require any real time access to the control

plane information because AS relationship rarely change

over time. After each execution of the basic algorithm

produces a ranked suspect list, we can assume that on

each path from the path’s reporting monitor to the node

immediately before the most suspicious node, all AS

paths are valid. Based on these valid links, we can fur-

ther infer the valid link in each neighborhood set. When

there is any change of neighborhood set, we run the lo-

cating algorithm again to update the suspicious list. The

iteration will stop if there is no change of suspicious list.

5.3.2 Improvement Two: Excluding Innocent ASes

The second improvement focuses on removing nodes

from the suspect set H of whose innocence we are rea-

sonably certain. One group of these nodes are the ones

that are on the reported paths that actually pass through

the most suspicious node and before the most suspicious

node. The reason for this exclusion is again that the at-

tacker cannot forge the identity of these nodes.

The second group of the innocent nodes are selected

based on the path disagreement test described in [45].

In path disagreement test, a reference point that is out-

side of the target prefix but topologically very close to

the prefix is selected and the path from a monitor to this

reference point and the path from same monitor to the

target prefix are compared. If they differ significantly it

is highly likely that the prefix has been hijacked. The

high accuracy of this test leads us to believe that nodes

on monitor-to-reference point paths are not likely to be

the hijacker. They can be excluded from the suspect set.

The second improvement is again incorporated into

the basic algorithm in an iterative fashion. After each ex-

ecution of the basic algorithm, the suspect set is reduced

by removing nodes of the two aforementioned innocent

groups. Then basic algorithm is executed again using the

reduced suspect set. The iteration is repeated until the

basic suspect set is stable.

6 Evaluation

We implemented and deployed LOCK on Planet-

Lab [31]. This is a necessary step to show that LOCK

is deployable in real world system. Also using the Plan-

etLab testbed, we evaluated the performance of LOCK



based on measurements of the deployed LOCK system.

In this section, we first present our measurement setup

and evaluation methodology. Then we evaluate the per-

formance of the monitor selection algorithm in LOCK,

and the effectiveness of LOCK against against syn-

thetic hijacks, reconstructed previously-known hijacking

events, and real hijacking attacks launched by us.

6.1 Measurement Setup

6.1.1 Candidate Monitors

In our experiments, we first chose a number of geograph-

ically diversified PlanetLab [31] nodes as candidate net-

work location monitors. We manually selected 73 Plan-

etLab nodes in 36 distinct ASes in different geographical

regions. More specifically, relying on their DNS names,

half of the nodes are in the U.S., covering both coasts

and the middle. The other half were selected from other

countries across multiple continents. Among these can-

didate monitors, a set of monitors were selected using the

algorithm presented in Section 4 to monitor each target

prefix.

6.1.2 Target Prefixes

We selected target prefixes from four different sources:

(i) Multiple Origin ASes (MOAS) prefixes, (ii) Single

Origin AS (SOAS) prefixes with large traffic volume,

(iii) prefixes of popular Web sites, and (vi) prefixes of

popular online social networks. To get prefixes from

sources (i) and (ii), we first use BGP tables obtained

from RouteViews [3] and RIPE [2] to identify the ini-

tial candidates of MOAS and SOAS prefixes. Then for

each candidate prefix, we tried to identify a small num-

ber (up to 4) of live (i.e. responsive to ping) IP addresses.

To avoid scanning the entire candidate prefixes for live IP

addresses, we mainly used the prefixes’ local DNS server

IP addresses to represent the prefix. If we failed to verify

any live IP address for a particular prefix, we discarded

this prefix from our experiments. Using this method, we

selected 253 MOAS prefixes. We also ranked all SOAS

prefixes based on “popularity” (i.e. traffic volume ob-

served at a Tier-1 ISP based on Netflow) of the prefix

and selected top 200 prefixes with live local DNS server

IP addresses.

We also selected prefixes that correspond to popular

applications on the Internet: Web and online social net-

works. In particular, we selected the top 100 popular

Web sites based on the Alex [5] ranking and obtain their

IP addresses and corresponding prefixes. We also ob-

tained IP addresses and prefixes of YouTube and 50 pop-

ular online social networks. Each of the selected online

social networks has at least 1 million registered users in

multiple countries. Combining prefixes from all above

four sources, we have a total of 451 target prefixes.

6.1.3 Measurement Data Gathering

In our experiments, each monitor measures its paths to all

selected IP addresses in all target prefixes via traceroute.

We also measured paths from each monitor to reference

points of target prefixes [45]. In addition, each moni-

tor also measures its paths to other monitors. We obtain

AS-level paths of above measured paths by mapping IP

addresses to their ASes based on the IP-to-AS mapping

published at iPlane [15].

The results presented here are based on monitoring

data collected from March 20th, 2008 to April 20th,

2008. In particular, we measured each path (from a mon-

itor to a target prefix) every 5 minutes.

In addition, we obtained the AS topology data during

the same time period from [16]. We also used the AS re-

lationship information captured for customer-to-provider

and peer links over 6 month (from June 2007 to Decem-

ber 2007) using the inferring technique described in [24].

6.2 Evaluation Methodology

We evaluated LOCK based on three sets of prefix hi-

jacking experiments: (i) synthetic prefix hijacking events

based on Internet measurement data; (ii) reconstructed

previously-known prefix hijacking events based on In-

ternet measurement data; and (iii) prefix hijacking events

launched by us on the Internet.

6.2.1 Simulating Synthetic Prefix Hijacking Events

We consider commonly used interdomain routing poli-

cies: “prefer customer routes” and “valley-free routing”.

In particular, an AS prefers routes announced from its

customer ASes over those announced from its peer ASes,

further over those announced from its provider ASes.

These policies are driven by financial profit of ASes. If

two routes have the same profit-based preference, then

the shorter route (i.e., fewer AS hop count) is preferred.

When the hijacker announces a fake prefix, we assume

that it does this to all its neighbors (i.e. providers, peers,

and customers) to maximize hijacking impact.

For each attack scenario, we simulated all three types

of hijacking scenarios, namely imposture, interception,

malicious, as shown in Figure 2 in Section 3. Each attack

scenario is simulated as follows. In each attack scenario,

we selected one PlanetLab node as the hijacker h and an-

other PlanetLab node as the target prefix t. The hijacking

is then observed from the monitors.

In the imposture scenario, the path from s to t will

become the path from s to h if s is polluted by h’s at-

tack. Otherwise, the path from s to t remains the same as



before the attack. This was repeated for all possible se-

lections of h, t, and s, except for cases where t’s AS is on

the AS path from s to h because the hijack will never suc-

ceed in these cases. In addition, since some paths were

not traceroute-able, we had to discard combinations that

require these paths.

The setup for simulating interceptions and malicious

scenarios is similar to that of the imposture scenario. In

the interception scenario, the path from s to t will be

the concatenation of paths from s to h and from h to t
if s is polluted by h’s attack. However, we exclude the

cases that there is one or more common ASes between

these two paths. This is because the hijacker h cannot

successfully redirect the traffic back to the target prefix

t, i.e., the interception hijack fails.

In the malicious scenario, the hijacker h has counter-

measure against LOCK. The path from s to t will be the

path from s to h (the AS of h will not show up) with a

few random AS hops appended after h. The generation

of these random AS hops is kind of tricky. If h gener-

ates different noisy tails for different monitors, these tails

may not converge at all. In this case, it is easier for our

locating algorithm to locate the hijacker. In our simula-

tions, in anticipating that the hijacker may fill its replies

to traceroute probes with fake identities, we replaced the

node identities with random entries for all nodes that are

farther than the hijacker (inclusive) in the paths resulted

from running traceroute from different monitors.

6.2.2 Reconstructing Previously-Known Prefix Hi-

jacking Events

We obtained the list of previously-known prefix hijack-

ing events from the Internet Alert Registry [14]. IAR

provides the network operator community with the up

to date BGP (Border Gateway Protocol) routing security

information. Its discussion forum 3 posts suspicious hi-

jacking events. We chose 7 that had been verified and

confirmed to be prefix hijacking events, including some

famous victims such as YouTube and eBay, during a time

period from 2006 to 2008.

We reconstructed these 7 hijacking events using the

following method. First, we selected a traceroutable IP

in each victim AS as the probing target t, and a tracer-

outable IP in each hijacker AS as the hijacker h. Then

we collected the traceroute information from each mon-

itoring site s to these targets t and hijackers h. The

routing policy is based again on the profit driven model.

Since we don’t know what kind of behavior each hijacker

took (imposture, interception or malicious), We conser-

vatively assume that the hijacker will try to evade our

measurement. So it follows the malicious scenario we

mentioned before.

6.2.3 Launching Controlled Prefix Hijacking

Events

We conducted controlled prefix hijacking experiments on

the Internet using hosts under our control at four differ-

ent sites, namely Cornell, Berkeley, Seattle, and Pitts-

burgh. Each host ran the Quagga software router and

established eBGP sessions with different ISPs. Effec-

tively, this allowed us to advertise our dedicated prefix

(204.9.168.0/22) into the Internet through the BGP ses-

sions. The idea behind the experiments was to use our

prefix as the target prefix with one of the sites serving

as the owner of the prefix and the other three sites (sepa-

rately) serving as the geographically distributed attackers

trying to hijack the prefix. More implementation details

can be found in [6]. In our experiment, we focused on

the imposture scenario. There were 12 hijacking cases

by switching the role of each site. These attacks were

launched according to a pre-configured schedule during

period from May 2, 2008 to May 4, 2008.

6.2.4 Performance Metrics

LOCK identifies suspicious hijackers and ranks them

based on their likelihood of being the true hijacker. The

hijacker ranked at top one is most suspicious. We thus

define the top-n accuracy of LOCK as the percentage of

hijacking events that the true hijacker ranks as top n on

the suspect list, where n is a parameter. We use this pa-

rameterized definition because different operators might

have different preference. Some might prefer knowing

just the most suspicious hijacker, in which top-1 accu-

racy is most important. Others might not mind learning

a longer suspect list to increase the likelihood that the hi-

jacker is included in the suspect list. We will later show

that the top-2 accuracy is already very high.

In addition, we define impact of a hijacker h as the

fraction of the ASes from which the traffic to the target

prefix t is hijacked to h, similar to what is done in [23].

We will then study the correlation between LOCK’s lo-

cating accuracy of a given hijacker and the impact of its

attack.

6.3 Evaluation on Synthetic Prefix Hijack-

ing Events

In this section, we use the results of LOCK based on the

data plane measurement to illustrate our findings.

6.3.1 Monitor Selection

We compare the performance of the monitor selection al-

gorithm (referred as clustering and ranking) proposed in

Section 4 with the following three monitor selection al-

gorithms: (i) random: randomly selecting m monitors
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Figure 3: Performance of monitor selection algorithms
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Figure 4: The CDF of the rank of hijackers in synthetic attacks

from all M candidates. (ii) clustering: dividing M mon-

itors into clusters based on the clustering algorithm pro-

posed in Section 4.1, then randomly selecting one moni-

tor from each cluster; and (iii) ranking: ranking M mon-

itors based on the ranking algorithm proposed in Sec-

tion 4.2, then selecting the first m candidates.

Figure 3 shows the top-1 accuracy of different monitor

selection algorithms when varying the subsets of moni-

tors. We focused on synthetic attacks since the dataset

is much larger than previously-known hijacks and con-

trolled real hijacks. We find that: (i) There is always a

trade-off between the number of monitors selected and

hijacker-locating accuracy. Note that even using all 73

monitors, the accuracy is less than 92%. It is not sur-

prising because it is hard to detect the hijacking events

which have small impact [23]. (ii) The clustering and

ranking algorithm outperforms the rest. For example,

for imposture attacks, selecting 10 monitors based on the

ranking and clustering algorithm is enough for achiev-

ing 80% top-1 accuracy. This is only 1/3 of number of

monitors needed to reach the same top-1 accuracy with

either ranking or the clustering algorithm, or 1/6 if mon-

itors are selected randomly. Hence in our experiments in

the rest of the section, whenever we need to select moni-

tors, we use the clustering and ranking algorithm, unless

otherwise specified.

Moreover, we want to make sure that the monitor se-

lection algorithm does not overload any monitors by as-

signing too many target prefixes to it for monitoring. For

each target prefix we select m = 30 monitors from the

total pool of M = 73 candidate monitors using the mon-

itor selection algorithm described in Section 4. Individ-

ual monitor’s work load is computed as the number of

target prefixes assigned to it divided by the total number

of target prefixes. Ideally, the average work load, which

is the load each monitor gets if the monitoring tasks are

evenly across all monitors equally instead of assigning

prefixes to monitors that can monitor most effectively, is

m/M ≈ 0.4. As as comparison, we observe the real

workload ranges from 0.3 to 0.55. In addition, only 4

monitors out of 73 have load above 0.5, which means

that they monitor more than half of prefix targets.

6.3.2 Effectiveness of Basic Algorithm

The evaluations of two different aspects of the effective-

ness of the hijacker-locating algorithm are presented in

this section. We show how well the ranked list captures

the hijacker identity, as well as how well the ranked list

reflects the impact of the hijack events.

Figure 4 illustrates where the hijacker is ranked in the

suspect list produced by the basic algorithm, for different

number of monitors selected. Obviously, the higher the

hijacker is ranked, the better the basic algorithm is. From

this figure, we can see that:
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Figure 5: Correlating the impact with the ranking value

• More than 80% of the time, our basic algorithm pin-

points the hijacker by ranking it as top 1 on the sus-

pect list, regardless what kind of attack and with

how many monitors, as long as more than the mini-

mum number of 10 monitors.

• Because of the early convergence problem de-

scribed in Section 5.2, the hijacker may not be

ranked the first. Therefore as we look into not only

the highest ranked node but even more nodes, the

chance that the hijacker is included in this selective

set increases. For example with 10 monitors, the

chance that an imposture hijacker is found among

the top three nodes is more than 94%, a 14% in-

crease from only looking at the highest ranked sus-

pect.

• The hijacker-locating algorithm performs best in

imposture scenarios. The reason is that imposture

paths are more likely to be straight without detour-

ing.

• Obviously the more monitors we employ, the bet-

ter the algorithm works. What is interesting is that

seemingly by having m = 30 we have reached

the point of diminishing return: having more than

30 monitors no longer improves the performance

much.

Next, we study the relationship between the impact of

a hijack event and where the hijacker is ranked in the sus-

pect list. This shows another aspect of the quality of our

hijacker-locating algorithm. That is, not only we want to

locate hijackers, we especially want to locate the hijack-

ers causing great damages. Figure 5 shows the ranking

(x-axis) vs the median impact of all hijackers with the

same ranking (Y-axis). All three plots in Figure 5 show

that there is a positive relationship between the hijacker’s

rank and the impact of its hijack attack. In other words,

the larger the impact caused by a hijacker, the more likely

our locating algorithm will rank the hijacker high in the

suspect list. This is mostly due to the fact that the early

converge problems occur mostly at where hijacks have

small impacts, near Internet edge.

6.3.3 Effectiveness of Improvements

Finally, we evaluate the quality of two improvements (I1

and I2) proposed in Section 5.3. In particular, we are not

only interested in the increase in top-1 accuracy these

improvements may bring, but also the false negative rate

(FNR), which is the ratio that the improvements mistak-

enly exclude a hijacker from the suspect list.

Table 1 shows both sets of numbers for different kinds

of attacks and different number of monitors. Different

combinations of the basic algorithm and the improve-

ments are shown in different rows of the table.

• I2 helps more. The reason is that for I1 we can only

trust the path before converges. But for I2, we have

more information provided by the reference point

traceroute.

• When combining I1 and I2, the accuracy can be fur-

ther improved. This is because the nodes that I1 and

I2 remove from the suspect list are typically not the

same.

• In general, LOCK (i.e., B+I1+I2) is able to pin-

point the prefix hijacker AS with an accuracy of

over 91%, up to 94.3%.

• The false negative ratio introduced by improve-

ments is relatively low. For example, when using

all monitors we can improve the accuracy by more

than 5% by applying both I1 and I2, while the false

negative ratio resulted from applying the improve-

ments is only 0.09%

6.3.4 Effectiveness on different AS-levels

We study the locating accuracy when the hijacker located

in different level in the AS hierarchy. We classify AS

nodes into three tiers: Tier-1 nodes, transit nodes, and



Table 1: The effectiveness of improvement
All monitors m=30

Algorithms Imposture Interception Malicious Imposture Interception Malicious

Accuracy FNR Accuracy FNR Accuracy FNR Accuracy FNR Accuracy FNR Accuracy FNR

B 88.7% 0.00% 86.3% 0.00% 85.4% 0.00% 86.2% 0.00% 84.7% 0.00% 83.5% 0.00%

B+I1 89.8% 0.03% 90.3% 0.17% 88.6% 0.14% 86.4% 0.05% 85.3% 0.14% 84.6% 0.11%

B+I2 91.3% 0.09% 93.1% 0.16% 90.4% 0.10% 90.7% 0.14% 90.6% 0.18% 88.3% 0.20%

B+I1+I2 94.2% 0.09% 94.3% 0.24% 93.1% 0.18% 92.4% 0.20% 91.4% 0.17% 91.8% 0.26%

Table 2: The effectiveness on different AS-levels
Category Imposture Interception Malicious

Accuracy FNR Accuracy FNR Accuracy FNR

All 92.4% 0.20% 91.4% 0.17% 91.8% 0.26%

Transit 97.6% 0.04% 96.3% 0.07% 94.8% 0.14%

Stub 90.2% 0.18% 90.1% 0.21% 90.4% 0.35%

Table 3: The effectiveness on prevention after locating
Methods Initial Stop the origin Stop in Tier1

LOCK 23.43% 0.10% 2.31%

Simple Locating 23.43% 13.13% 21.90%

stub nodes like in [23]. 4 Our hijackers in planetlab be-

longs to transit nodes, or stub nodes. When using two

improvements and 30 monitors, we compare the accu-

racy and false negative ration for these two classes, in

Table 2. The hijackers on the higher level could be lo-

cated more easily. The hijackers on the edge is relatively

hard to locate. We can still achieve more than 90% accu-

racy.

6.3.5 Effectiveness of filtering after locating the hi-

jacker

After locating the AS, the next step is to filter the fake

AS announcement from it. We compare the average per-

centage of impacted (polluted) AS, before and after the

locating and filtering either stop on the origin or on the

Tier1 AS. As a comparison, we also select the last hop

of AS of the observed paths as a hijacker (simple locat-

ing approach) then do the same filtering. They are under

malicious case. Table 3 shows that Lock is more helpful

than simple locating method to prevent hijacks.

6.3.6 Remarks

We have shown that LOCK performs well using monitor-

to-prefix paths measured in the data plane. Similar ob-

servation would hold if control plane paths are used in

LOCK. In the non-malicious cases, the monitor-to-prefix

paths that observed in the control plane are the same as

those observed in the data plane. However, in the mali-

cious case, we have shown that the hijacker can employ

more sophisticated evasion technique in the data plane

than in the control plane. Therefore, our results shown

Table 4: Previously-Known prefix hijacking events
Victim AS Hijacker AS Date #monitors

3691 6461 March 15, 2008 16

36561 (YouTube) 17557 February 24, 2008 9

11643 (eBay) 10139 November 30, 2007 7

4678 17606 January 15, 2007 8

7018 31604 January 13, 2007 13

1299 9930 September 7, 2006 5

701, 1239 23520 June 7, 2006 12

in this section provide a lower bound of LOCK perfor-

mance against malicious hijackers.

6.4 Evaluation on Previous-Known At-

tacks

We reconstructed 7 previously known prefix hijacking

events. Table 4 shows the dates and ASes of the hijacker

and the target prefix (i.e., the victim) of these events. By

using all 73 monitors deployed on PlanetLab, LOCK is

able to accurately locate the hijacker ASes as the top-1

suspects for all these hijacking events, i.e., the true hi-

jackers are ranked first on the suspect lists. Using the

monitor selection algorithm (clustering and ranking) pre-

sented in Section 4, we also identified the minimum set

of monitors that were required by LOCK to accurately

locate the hijacker in each of these previously-known

events. The last column of Table 4 shows that all hijack-

ers could be correctly located as top-1 suspects by using

16 or fewer monitors. A detailed investigation shows that

these hijacks polluted majority of the monitors, resulting

in LOCK’s high locating accuracy.

6.5 Evaluation on Controlled Real Attacks

In this set of experiments, we launched real imposture

attacks using four sites under our control. The schedule

is shown in Table 5. During the experiments each LOCK



Table 5: Locating hijackers in real Internet attacks
Victim Hijacker Launch Time Response Time Required

Site Site (EST) (minutes) monitors

Berkeley May 2 12:01:31 13 12

Cornell Seattle May 2 16:12:47 7 10

Pittsburgh May 2 17:34:39 9 9

Cornell May 2 19:32:09 13 14

Pittsburgh Berkeley May 2 22:50:25 11 15

Seattle May 3 02:26:26 12 15

Cornell May 3 11:20:42 9 8

Seattle Pittsburgh May 3 13:03:10 12 12

Berkeley May 3 19:16:16 8 18

Seattle May 3 22:35:07 13 14

Berkeley Pittsburgh May 4 00:01:01 12 16

Cornell May 4 11:19:20 11 10

monitor probed the target prefix 204.9.168.0/22 once ev-

ery 5 minutes. For the purpose of this experiment, we

used the detection scheme proposed in [45], which was

able to detect all the attacks launched from the controlled

sites. The hijackers in these experiments were “honest”,

i.e., no countermeasure was done by the hijackers. Thus

we observed that LOCK locates the hijackers as top-1

suspects in all the real imposture attacks.

In this real Internet experiment, we were able to eval-

uate the response time of LOCK in addition to its accu-

racy. The response time is defined as the latency from

the time the the attack is launched by the hijacker to the

time that LOCK locates the hijacker. The response time

highly depends on two major factors: the speed of prop-

agation of invalid route advertisement and the probing

rate employed by LOCK monitors. It usually takes up to

a few minutes for a route advertisement to spread across

the Internet. This is the latency that an attack takes be-

fore making full impact on the Internet. After a LOCK

monitor is impacted by an attack, it may also take a few

minutes for the monitor to detect and locate the hijacker

because the monitor probes target prefixes periodically.

There are also few minor factors that may affect the re-

sponse time. For example, there can be a few seconds

latency for LOCK monitors to get replies for each probe.

However, they are neglected in our evaluation because

they are orders of magnitude smaller than the above two

major factors.

We record the timestamp each attack is launched from

a control site and the timestamp LOCK locates the hi-

jacker (i.e., that controlled site). Both of which are syn-

chronized with a common reference time server. The

response time is computed by taking the difference be-

tween the above two timestamps. If alternative detection

scheme is used, the observed response time serves as a

conservative upper bound of the latency that LOCK takes

to locate the hijacker.

Table 5 shows the response time and minimum number

of required monitors for locating these real prefix hijack-

ing events. We observe that LOCK is able to locate the

hijacker within 7 ∼ 13 minutes. Given that the probe fre-

quency of LOCK monitors is 5 minutes, the results im-

plies that it takes LOCK at most 2 ∼ 3 rounds of probes

to detect and locate the hijacker. Moreover, all hijack-

ers are correctly located as top-1 suspects by using 18 or

fewer monitors.

7 Related Work

A number of solutions have been proposed to proactively

defend against prefix hijacking. They can be categorized

into two broad categories: crypto based and non-crypto

based. Crypto based solutions, such as [4,8,13,19,27,35,

36], require BGP routers to sign and verify the origin AS

and/or the AS path to detect and reject false routing mes-

sages. However, such solutions often require signature

generation and verification which have significant impact

on router performance. Non-crypto based proposals such

as [11,18,32,37,44] require changing router softwares so

that inter-AS queries are supported [11, 32], stable paths

are more preferred [18, 37], or additional attributes are

added into BGP updates to facilitate detection [44]. All

the above proposals are not easily deployable because

they all require changes in router software, router con-

figuration, or network operations, and some also require

public key infrastructures.

Recently, there has been increasing interest in solu-

tions for reactive detection of prefix hijacking [6, 12,

21, 22, 26, 34, 36, 45] because such solutions use passive

monitoring and thus are highly deployable. For exam-

ple, [43,45] monitor the data plane, [21,22,26,34] mon-

itor the control plane, and [6, 12, 36] monitor both con-

trol and data planes. LOCK is different from all these

approaches because LOCK locates the hijacker AS for

each prefix hijacking event, while the above approaches

only focus on detecting a hijacking event without further

revealing the location of the hijacker. In fact, LOCK can

be used together with any of the above hijacking detec-



tion algorithm for identifying hijacker AS because the

flexibility of LOCK on using either control plane or data

plane information in locating hijacker.

Measurement-based solutions often require careful se-

lection of monitors. In particular, LOCK selects mon-

itors based on their likelihood of observing hijacking

events, while [45] proposed an initial monitor selection

algorithm to detect hijacks without further evaluation,

and [23] tries to understand the impact of hijackers in

different locations. In addition, there have been a num-

ber of studies [7,9,40] on the limitations of existing BGP

monitoring systems (e.g. RouteView) and the impacts of

monitor placement algorithms [29] for collecting BGP

data for a boarder range of applications such as topol-

ogy discovery, dynamic routing behavior discovery and

network black hole discovery [20, 41].

Finally, existing works [38, 39, 42] proposed to mit-

igating prefix hijacking by using an alternative routing

path [38, 39], or by modifying AS SET [42]. Though

LOCK does not directly handle the mitigation of prefix

hijacking events, LOCK can provide the hijacker loca-

tion information required by these mitigation schemes.

8 Conclusion

In this paper, we propose a robust scheme named LOCK

for locating the prefix hijacker ASes based on distributed

AS path measurements. LOCK has several advantages:

1) LOCK is an unified scheme that locates hijackers in

the same fashion across different types of prefix hijack-

ing attacks; 2) LOCK is a distributed scheme with work-

load distributed among multiple monitors; 3) LOCK is

a robust scheme because multiple monitors help improv-

ing locating accuracy and discounting individual errors;

and 4) LOCK is a flexible scheme because it can use AS

path measurement data obtained either from data-plane

or from control-plane to locate the hijacker AS.

The performance of the LOCK scheme has been eval-

uated extensively through experiments in three kinds of

settings: test topology constructed based on real Inter-

net measurements, reconstructed known prefix hijack at-

tacks, and controlled prefix hijack attacks conducted on

the Internet. We have shown that the LOCK scheme is

very accurate, highly effective, and rapid reacting.
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Notes

1Note that some vendor implementation does not check whether

the neighbor has appended its own AS in the announcement , while

some vendor implementation does check (in which this hijack does not

succeed).
2The complexity is not a concern here because the number of clus-

ters is relatively small comparing to traditional clustering problem.
3Disscussion form: http://iar.cs.unm.edu/phpBB2/

viewforum.php?f=2
4To choose the set of Tier-1 nodes, we started with a well known

list, and added a few high degree nodes that form a clique with the

existing set. Nodes other than Tier-1s but provide transit service to

other AS nodes, are classified as transit nodes, and the remainder of

nodes are classified as stub nodes.


