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ABSTRACT
Cloud applications have increasingly come to rely on dis-
tributed storage systems that hide the complexity of handling
network and node failures behind simple, data-centric inter-
faces (such as PUTs and GETs on key-value pairs). While
these interfaces are very easy to use, the application is com-
pletely oblivious to the location of its data in the network;
as a result, it has no way to optimize the placement of data
or computation. In this paper, we propose exposing the net-
work location of data to applications. The primary challenge
is that data does not usually exist at a single point in the net-
work; it can be striped, replicated, cached and coded across
different locations, in arbitrary ways that vary across stor-
age systems. For example, an item that is synchronously
mirrored in both Seattle and London will appear equally far
from both locations for writes, but equally close to both loca-
tions for reads. Accordingly, we describe Contour, a system
that allows applications to query and manipulate the location
of data without requiring them to be aware of the physical
machines storing the data, the replication protocols used or
the underlying network topology.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Net-
work Topology; C.4 [Performance of Systems]: Mod-
eling Techniques

General Terms
Design, Measurement, Performance
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1. INTRODUCTION
Existing cloud platforms offer developers storage ser-

vices with simple, data-centric interfaces to store and
retrieve application data (for example, Microsoft Azure’s
Blob Store and Amazon’s S3 allow PUTs and GETs on
key-value pairs). Behind such simple interfaces, these
services use complex machinery to ensure that data is
available and persistent in the face of network and node
failures. As a result, developers can focus on application
functionality without having to reason about complex
failure scenarios.

Unfortunately, this simplicity comes at a cost; ap-
plications have little or no information regarding the
location of their data in the network. Without this
information, applications cannot optimize their execu-
tion by moving computation closer to data, data closer
to users, or related data closer to each other. These
kinds of optimizations can be crucial for applications
executing across different data centers (where network
latencies can be very high), as well as within hierar-
chical data center networks (where bandwidth can be
limited).

The current state-of-the-art solution for this problem
involves guesswork: the cloud determines data place-
ment by predicting the future access patterns of the ap-
plication based on past history, while treating the appli-
cation as a black box. This approach can be expensive
and counter-productive, since the application typically
has more accurate information than the cloud about its
own future behavior. In addition, without input from
the application, the cloud can optimize only simple ag-
gregates of low-level metrics such as bandwidth usage or
access latency. Requesting information from the appli-



cation – i.e., its future access patterns or the high-level
metrics of interest to it – is a possible solution; how-
ever applications can have arbitrary optimization cri-
teria that are difficult to express to the cloud without
complicating the storage interface.

In this paper, we examine a different approach: ex-
posing the location of data to applications and allowing
them to optimize their own execution. We want appli-
cations to be able to estimate the time taken to update
or retrieve data from different network locations. We
also want to enable cloud interfaces that allow appli-
cations to move computation closer to data (and vice
versa), as well as request new computational resources
near existing data. Importantly, we want to do so with-
out breaking the abstraction of data-centric storage; ap-
plications must not be aware of physical storage servers
or the underlying network topology.

The primary challenge is that data does not exist at a
single location in the network. Data can be striped, mir-
rored, cached and coded across different points in the
network, using protocols with widely varying semantics.
Consider an example in which a machine in Los Angeles
accesses data synchronously mirrored at data centers in
Seattle and London. For reads, the data will appear to
reside in Seattle, since only the local data center needs
to be contacted. For writes, the data will appear to
reside in London, since both data centers are contacted
in parallel for a successful write operation. Note that
different protocols – where the client machine waits for
a response from the first mirror before updating the sec-
ond, or lets one mirror directly update the other – lead
to different access latencies to the data.

To capture such protocol-specific behavior, we pro-
pose the idea of replication topologies. These are sim-
ple representations of the interactions between different
servers triggered by reads or writes to a storage ser-
vice. Importantly, replication topologies are not meant
to be complete descriptions of protocols; instead, they
capture only the network pathways taken by the proto-
col in failure-free operation. We find that most proto-
cols used in practice – such as synchronous and asyn-
chronous mirroring, erasure codes, chain replication and
different types of quorums – can be modeled with very
simple replication topologies.

We describe the design of Contour, a system that
uses replication topologies to provide data-centric loca-
tion functionality. Contour provides estimates of the
latency to retrieve or update data in a storage service
from any node in the network. It also supports higher-
level functionality such as closest-node discovery (e.g.,
finding a node that is closest to a key/value pair for
reads) and constraint satisfaction (e.g., finding a node
that can update a particular key/value pair within 100
ms and read another within 10 ms). These interfaces
can be used directly by applications to optimize per-

formance. They can also be used by cloud subsystems
to support new application-facing interfaces for moving
data closer to given network locations, or for requesting
new resources near existing data.

To work with Contour, a storage service has to pro-
vide it with the replication topology used to access data.
Contour combines this information with link-level net-
work topology information – such as RTTs, bandwidth
and loss rates – to estimate data access latencies from
any other location in the cloud. This link-level informa-
tion is collected continuously in the background, amor-
tizing the cost of measurement across multiple appli-
cations. Synthesizing accurate estimates in this man-
ner is a significant challenge; however, we believe that
cloud platforms have enough monitoring infrastructure
in place on their internal networks to make this ap-
proach viable. Additionally, high-level functions such
as closest-node discovery do not require very accurate
latency estimates; it is sufficient if the estimate for the
closest node is lower than for any other node.

In this paper, our target applications are Internet ser-
vices catering to a geo-distributed user base. Contour
is equally relevant for different applications, such as
MapReduce jobs running within bandwidth-constrained
data centers, or enterprise applications split across pri-
vate and public clouds. We omit discussing these appli-
cations in detail for lack of space.

2. LOCATION IN THE CLOUD
To understand why location is important in the cloud,

we examine the anatomy of a typical application. Cloud
applications are composed of three distinct types of en-
tities:

• Clients are machines or devices accessing the ser-
vice from the public Internet. When a user types
in the URL of a service into her browser, the re-
quest is redirected (typically through DNS-based
load-balancing) to a data center hosting the ser-
vice.

• Compute Nodes are the work-horses of the cloud,
executing application logic for services (known as
‘worker roles’ in Azure and ‘instances’ on EC2).
Compute nodes usually do not store persistent state,
though they can store soft session state and be
‘sticky’ with respect to individual user sessions.
Within each data center, incoming requests are di-
rected to compute nodes by a layer of web-servers
that accept and manage HTTP connections from
users.

• Storage Services store all application data and
are accessed by compute nodes via simple, data-
centric interfaces. Under the hood, these are dis-
tributed storage systems running complex proto-
cols to ensure that data is always available and



durable, even when machines, disks and networks
fail. Each cloud provider offers a range of such ser-
vices, with different interfaces (such as key-value
stores, queues, or even linear address spaces) and
persistence guarantees.

Consider the example of FaceTracker, a hypothetical
face recognition application for mobile phones: when
the user of the phone points its camera towards some
person, the image is matched against a library of her
friends’ photos. In a cloud-based version of this appli-
cation, the client would be the phone itself, and the
library of photos would be stored in a cloud-based stor-
age service (say a key-value store). Images are uploaded
from the phone to a compute node, which runs face
recognition algorithms on them, fetching photos of the
user’s friends from the key-value store with GET calls.
Successfully matched images are occasionally added to
the library with PUT calls to improve accuracy.

Of the three types of entities described, the applica-
tion obviously has no control over the location of clients,
while it can move data around with some cost in terms
of bandwidth and time. Computation is the easiest to
move, since compute nodes have no persistent state.
Compute nodes typically need to be close to clients
to minimize interaction latencies; for FaceTracker, it
is reasonable to assume that a user’s compute node is
always in the data center closest to her location. In
practice, deployed systems do a good job of redirecting
clients to compute nodes in close-by data centers; con-
sequently, we do not focus on the location of compute
nodes relative to clients.

Against this backdrop, we examine application sce-
narios where the location of data matters with respect
to compute nodes, using FaceTracker as a running ex-
ample.

Obtaining new resources: An application may need
new compute nodes near existing data items. Alterna-
tively, it may want to place a newly created data item
near an existing compute node. When Alice uses Face-
Tracker for the first time, her request is directed to a
existing compute node, which creates her photo library
close to itself.
Load balancing and failure recovery: When a com-
pute node processing some data fails or gets overloaded,
the application may need to shift computation to a dif-
ferent compute node near the same data. When the
compute node matching Alice’s incoming images fails,
FaceTracker restarts the task on a different compute
node close to her photo library.
Dispersed data: When a task accesses a set of differ-
ent data items, the application may want to locate it
on a compute node equally close to all these data items,
or closer to some of them than the rest. Alice wants
to match her camera’s feed against all her friends’ li-

braries; accordingly, FaceTracker locates her matching
task on a compute node optimally placed with respect to
all their libraries.
Moving data closer to computation: When users
move or change their access patterns, the application
may want to relocate data to be closer to the new com-
pute nodes handling those users. When Alice moves
from New York City to San Francisco, FaceTracker moves
her photo library closer to the new compute node in Cal-
ifornia now matching her images.
Shared data: When a data item is being concurrently
accessed by multiple compute nodes, the application
may want to place the data item equally close to all the
compute nodes, or prioritize some over others. Alice
is in New York and wants to match her camera’s feed
against Bob’s photo library, who lives in Seattle. Since
moving her matching task to Seattle will increase her
latency and cost to upload images, FaceTracker moves
Bob’s library closer to her compute node.

3. REPLICATION TOPOLOGIES
Thus far, we have established the need for applica-

tions to know – and change – the location of data. This
is relatively easy to achieve if the cloud stores each data
item on a single machine in the network; the location
of data is simply the location of the machine storing
it. In this scenario, existing node-centric models for
network location (such as network coordinates or tree-
based models) can be used to estimate access latencies
for the data. While such models usually provide low-
level path properties between nodes (such as RTT and
bandwidth), it is possible to convert these metrics into
estimates of data transfer times; for example, the time
taken to retrieve 1 MB of data via TCP/IP.

Unfortunately, data in the cloud does not usually re-
side on a single machine, making node-centric network
models ineffective in this context. Storage services typ-
ically replicate data over multiple nodes, using a wide
range of different protocols. We use ‘replication’ as a
catch-all term, spanning techniques such as caching,
mirroring, erasure coding and striping. When a read
or write operation is issued on an item in a storage ser-
vice, multiple storage servers communicate with each
other to ensure the right semantics for the operation.
The exact patterns of communication – which servers
talk to each other, and whether they wait for responses
from each other before replying back to the node issuing
the request – depend on the replication protocol used.

The key insight in this paper is that the critical path
of interactions between storage servers for any replica-
tion protocol can be captured using simple representa-
tions called replication topologies. Replication topolo-
gies can be drawn as DAGs, where a directed edge be-
tween two nodes represents a message going from one
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Figure 1: Read/Write replication topologies for
a synchronous mirroring protocol with one pri-
mary (A) and two secondaries (B, C).

node to the other. Edges with solid lines correspond
to messages that have the actual payload being read or
written, whereas edges with dashed lines correspond to
small control messages. To express message dependen-
cies precisely, we allow a single machine to be repre-
sented by multiple nodes in the graph.

To understand replication topologies better, consider
a simple synchronous mirroring protocol consisting of a
primary replica and two secondary replicas. Write oper-
ations are first sent to the primary, which synchronously
stores them on the secondary replicas before responding
back to the compute node. All read operations are sat-
isfied directly by the primary; the secondaries are read
from only in the case of primary failure.

We show the corresponding replication topology for
this protocol in Figure 1, where a compute node n is
shown accessing an item synchronously mirrored on a
primary A and two secondaries B and C. For reads, the
replication topology simply consists of a single outgoing
edge from an n node to a A node, and then back to an
n node. For writes, we have an outgoing edge from
n to A, which then has two edges outgoing to B and
C, representing the mirroring messages. B and C then
respond back to A, which in turn responds back to n.

Given this replication topology and the locations of
n, A, B and C in the network, it is possible to estimate
the time taken to write or retrieve a value. For exam-
ple, if the value is of size 5 MB, the total time taken
by n to write it can be computed as follows. First,
we compute the time taken to transfer 5 MB from n
to A. Since A then contacts B and C in parallel, we
then take the max of the time taken along those two
paths. Each path involves sending 5 MB from A to B

or C, respectively, and then receiving a short acknowl-
edgment message back. Lastly, we add the time taken to
send an acknowledgment from A to n. In other words,
the latency to write a value is a simple function over
inter-node data transfer latencies, using sum and max
operators.

In addition to providing estimates of data access la-
tencies, replication topologies also allow us to under-
stand how these latencies are impacted by the location
of each replica in the network. In the example above,
moving n closer to B or C does not necessarily improve
performance for writes; what matters is the proximity
of n to A, and of A to B and C. Similarly, the lo-
cation of B or C has no impact on read performance
from n. Such knowledge of the replication topology can
be used to implement functionality such as closest-node
discovery more efficiently.

Our representation includes two more operators to
indicate that a node should contact or wait for the clos-
est subset of its neighbors. Figure 2 shows the replica-
tion topology for an erasure coding protocol; an item
is stored as six coded pieces on six different machines
(A to F ), of which any four pieces are sufficient to re-
construct the original item. We show a variant of this
protocol where n contacts all six machines in parallel,
but waits for only the first four machines that respond.
To implement this, we introduce the first-k operator on
the DAG, indicating that the node waits for only the
first k incoming messages. A different variant of this
protocol might have n contact only the four closest ma-
chines, than all six; to model this, we use a closest-t
operator on the outgoing edges of a node to indicate
that it contacts only its t closest neighbors.

We believe that replication topologies are general enough
to model a wide range of replication protocols. For in-
stance, quorum-based protocols are similar to erasure
coding in behavior, in that only a subset of nodes needs
to be contacted (or waited for). One challenging aspect
of some protocols is that their behavior can change over
time; for example, an asynchronous primary-backup pro-
tocol may allow reads from the secondary except when
the primary has just been updated. We can model these
protocols as exhibiting different replication topologies
at different points in time.

4. THE CONTOUR SYSTEM
In this section, we describe the design of the Con-

tour system, and how it interacts with applications and
storage services.

4.1 Contour and the Storage Service
Contour expects the storage service to implement a

simple interface that returns the read or write replica-
tion topology for a passed-in key. For example, if the
storage service implements synchronous mirroring, the
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returned replication topology will be identical to the di-
agram in Figure 1, with actual IP addresses substituted
for abstract node identifiers (e.g., 192.168.0.1 instead of
A).

As described in the previous section, computing the
access latency from this replication topology involves a
simple function over inter-node data transfer latencies
(for example, the time taken to transfer 5 MB from
192.168.0.1 to 192.168.0.2), involving sum, min and max
operators. Contour determines this function from the
replication topology and evaluates it using estimates for
inter-node data transfer latencies obtained from its own
link-level measurements.

A secondary interface that the storage service needs
to implement is a call that returns the size of the value
corresponding to a passed-in key. This is used by Con-
tour to compute access latencies for reads given the
replication topology.

4.2 Contour and the Application
The basic functionality provided by Contour is data

access latency estimation: applications (or cloud sub-
systems) can estimate the time taken to read or write
data from any compute node in the network. Over this
basic primitive, Contour builds more specific function-
ality; for example, it allows applications to find the node
from a set closest to a particular unit of data. It also
supports finding nodes that satisfy access latency con-
straints with respect to multiple data items. This is
useful if the application wants to choose an existing
compute node to run a particular task based on the
data it accesses. It is also useful for cloud allocation or
scheduling components that want to satisfy application-
specified requirements for new compute nodes.

All these calls identify individual data units with an
opaque key parameter, which depends on the underly-
ing storage service involved; it can be a simple key, a
block number in a linear address space, or a (row, col-

umn) pair. Contour does not actively operate on the
key in any way; it merely uses it as a parameter to re-
trieve the replication topology from the storage service.

On their own, these interfaces naturally support any
application scenario that involves moving computation
closer to data. With the involvement of the storage
service, they can also support scenarios that involve
moving data closer to specific network locations. In
these cases, we expect the storage service to support
an application-facing interface that allows data to be
moved closer to some node. The storage service can
then use Contour’s interfaces to estimate the distance
of different replication topologies from the target node
to find one that fits the access latency constraint.

4.3 Design Considerations
The simplest way to implement Contour is as a cen-

tralized service, accessed by applications via local li-
braries. Every time an application wishes to estimate
access latencies to a key, it can first issue a query to
a close-by Contour server, which correspondingly re-
trieves the replication topology from the storage ser-
vice. While simple to implement, this purely pull-based
approach can result in high query latencies. Caching
responses – both at the Contour server and the appli-
cation machine – can reduce latencies, but introduces
the possibility of staleness.

An alternative involves introducing push-based mech-
anisms. Applications could register their interest in spe-
cific keys to their local Contour server, which in turn
registers its interest in those keys to the storage service.
When the Contour server is notified by the storage ser-
vice of a change in the replication topology for a key
– or the underlying network topology changes – it can
notify the compute node interested in that key.

5. DISCUSSION
Contour in different settings: We focused this

paper on Internet services running across geographically
distant data centers. Contour generalizes easily to other
types of cloud applications with one alteration: the way
that Contour computes data transfer latencies from low-
level link metrics such as RTT, bandwidth and loss rates
can change depending on the setting. For example, a
different methodology may be required to compute data
transfer latencies within a data center, as opposed to
wide area links. This functionality can be abstracted
away into a module responsible for generating estimates
of data transfer latencies between two physical nodes.

Modeling accesses to storage media: One as-
pect of using Contour within a single data center is that
the latency of accessing storage media (such as disk or
flash) needs to be modeled as well, since it constitutes a
much larger fraction of end-to-end latency in such set-
tings. We can modify replication topologies to model



media access latencies by introducing new nodes and
edges into the graph as appropriate. For example, if A
is a storage server in a replication topology, it could be
rewritten as two nodes instead, A1 and A2, with a di-
rected edge going from one to the other. All incoming
edges into A would now go into A1, and all outgoing
edges would now leave from A2.

Does the cloud care about its own privacy?:
An intriguing aspect of Contour’s approach is that the
cloud could end up revealing information about its com-
position. In a geo-distributed setting, this could result
in applications learning the number of data centers or
their location; within a data center, they could possi-
bly learn the type of topology used or the number of
machines. While this possibility exists even in the ab-
sence of Contour, the ability to collect large numbers
of latency estimates without actively transferring data
provides applications an inexpensive way to infer the
cloud’s internal details. This is an open problem for
Contour; one possibility involves adding jitter to esti-
mates to offer the cloud some measure of privacy.

Other data-centric metrics: Contour provides ap-
plications with the estimated latency to retrieve or up-
date data from a storage service. A different metric of
interest could be cost in terms of dollars; for example,
if an access results in traffic between data centers, the
application may be charged for it by the cloud. Accord-
ingly, Contour could report to the application the cost
of a data access. Another possible data-centric metric
is availability; Contour could provide the probability
that an access succeeds, based on the failure rates of
the network paths involved in the replication topology.

6. RELATED WORK
Contour is inspired by existing work on network mod-

els for predicting path properties such as latency be-
tween Internet end-hosts; for example, network coor-
dinate systems such as Vivaldi [3] attempt to embed
inter-node latencies in a coordinate space. Other work
in this space includes systems that offer different mod-
els [5], narrow location-centric functionality [6] or gen-
eral query interfaces [4]. Contour can be viewed as an
attempt to extend this class of work to provide a data-
centric notion of network location.

Volley [1] does automated data placement for geo-
distributed applications based on user request patterns.
A key difference from our work is that Volley ignores
write performance and uses a simple, fixed replication
strategy; accordingly, it equates the location of data
to the location of its closest replica. In addition, Vol-
ley does not seek to retain a data-centric application
interface. Lastly, Volley represents a design where op-
timization is handled by infrastructure instead of the
applications themselves; as mentioned earlier, it is dif-

ficult for such designs to handle arbitrary application
priorities.

Another related system is PADS [2], which provides
an architecture for building distributed storage systems
by defining policies for locating and updating replicas.
Like Contour, PADS comes up with a general repre-
sentation for different replication policies; however, its
goal is more ambitious since it tries to completely define
the protocol. In contrast, Contour’s replication topolo-
gies are meant to only model the end-to-end latencies
exhibited by the protocol.

7. CONCLUSION
Modern cloud platforms make it easy for developers

to write applications by abstracting away node-level de-
tails under data-centric interfaces. However, doing so
robs developers of the ability to understand and op-
timize application performance. We present a system
called Contour that allows nodes to reason about the
location of data in the network without breaking the ab-
straction of data-centric storage. At the core of Contour
are replication topologies, abstractions that express the
critical server interactions that occur on data accesses.
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