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ABSTRACT
The performance and cost for tenants in today’s datacenters
depends on the location of their virtual machines within the
datacenter. However, a tenant’s location is a knob for the
provider and is of no interest to the tenant. Hence, this pa-
per argues for location independent tenant costs in dat-
acenters. We show how a change in today’s IaaS offerings,
coupled with a simple pricing scheme, can achieve this. We
discuss how such a pricing model can be implemented and
show that the consequent increase in system throughput can
lead to a win-win situation– tenant costs are location inde-
pendent and lower while provider revenue increases too.
Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations
General Terms: Design, Economics, Performance
Keywords: Datacenter, Price, Network cost, Location
independence

1. INTRODUCTION
Today’s cloud datacenters offer users on-demand com-

puting resources. While the CPU and memory on com-
pute instances (virtual machines, or VMs) are dedicated
resources, the network connecting them is shared. Con-
sequently, the internal network bandwidth achieved by a
tenant’s instances depends on their location. Here “loca-
tion” is a catch-all phrase for inter-related factors such
as the placement of tenant instances, neighboring ten-
ants sharing network paths and their load, etc.

Such location dependence means that network per-
formance for tenants can vary significantly [1–4]. This,
in turn, impacts the performance for a wide variety of
applications; from user-facing web services [2,5] on one
end to data-parallel (MapReduce like), HPC and scien-
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tific applications [2,6–9] on the other. Location depen-
dent performance impacts the cost too. In cloud set-
tings, tenants pay based on the time they occupy their
VMs and since occupancy time is influenced by network
performance, tenant cost can be affected by location.

We take the position that the location of virtual ma-
chines in a datacenter is a knob for the provider but is
of no interest to the tenant. Consequently, the fact that
tenant location can impact their performance and their
cost is unfair. Many recent proposals address the perfor-
mance issue by providing location-independent network
bandwidth, either through richer topologies [10,11] or
through rate limiting [12–14]. However, as we discuss
later, the former solution may be an overkill while the
latter requires tenants to express their demands and re-
sults in network fragmentation.

In this paper, we defer on the performance goal and
aim to ensure that tenants costs, in spite of (possibly)
variable network performance, do not depend on the lo-
cation of their virtual machines. To this end, we show
how a change in today’s IaaS offerings coupled with a
simple pricing scheme can achieve location independent
costs in multi-tenant datacenters. With the proposed
model, each virtual machine comes with dedicated ag-
gregate network bandwidth to other VMs for the same
tenant. Tenants can, of course, send at more than this
base bandwidth. As today, tenants are charged for each
unit of time they occupy a VM. When a VM gener-
ates traffic at less than the base bandwidth, the tenant
pays a fixed VM occupancy cost. However, when the
VM generates traffic at a higher rate, the tenant cost is
proportional to the amount of data transferred.

Hence, a tenant is charged based on whether process-
ing (including local I/O) or the network is its bottle-
neck resource. We show that such “dominant resource
pricing” (DRP) ensures the tenant costs do not depend
on their network performance and hence, are location
independent. Further, by ensuring a lower bound on
the network bandwidth for each instance, DRP bounds
tenant application performance. Such reining of outliers
increases system throughput and actually results in ten-
ant costs lower than today.
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We present a strawman DRP design involving exist-
ing techniques for smart VM placement and network
fair queuing. While many practical challenges remain,
our analysis indicates that both tenant and providers
can accrue a lot of benefits by addressing them. An
interesting consequence of the proposed design is that
it leads to a better alignment of provider and tenant
interests than the status quo. Providers have an incen-
tive to improve tenant performance so as to maximize
system throughput. This can, in turn, lead to increased
provider revenue and presumably, reduced tenant costs.

Tenant applications use resources beyond the two,
VMs and internal network, we focus on; for instance,
the cloud storage service, external network, etc. The
basic idea of charging tenants for their bottleneck re-
source can be extended to achieve fixed tenant costs
in such multi-resource environments. However, this re-
quires performance bounds for each resource which may
not be trivial to offer. For example, implementing stor-
age bandwidth guarantees is an open research problem.
In this context, the simple, two-resource DRP proposal
in this paper represents a first stab at the broader goal
of location independent tenant costs in datacenters.

2. LOCATION INDEPENDENT
PERFORMANCE

The shared nature of the network in cloud datacen-
ters implies that tenant network performance can vary
depending on its “location”, i.e., where the tenant’s
VMs are located, other VMs in the network vicinity and
their load, what transport protocols are being used. Re-
cent measurement studies have observed a variation of
almost an order of magnitude for bandwidth between
VMs in the same datacenter [1–4,9,14,15]. For long-
running, web facing applications, this implies unpre-
dictable and possibly poor performance. For job-like,
data parallel applications, network variability impacts
completion time and hence, cost.

To counter these problems, two classes of proposals
make network performance independent of tenant loca-
tion. First, richer topologies like fat tree networks [10,11]
and the Amazon ClusterCompute network do away with
network oversubscription. With such topologies, each
physical machine is limited only by its uplink. Assuming
machines with 4 VM slots and a 1Gbps interface, a fat
tree network ensures a VM can communicate with any
other VM at rate ≥ 250Mbps. However, such topologies
may be excessive given the locality of typical datacen-
ter communication patterns [16,17]. This is especially
true for cloud settings where a tenant’s VMs mostly
communicate with other VMs for the same tenant.

The second class of solutions offer bandwidth guar-
antees to tenants by packing their VMs in a bandwidth
aware fashion while using rate limiting to ensure indi-
vidual VMs do not exceed their allocation [12–14]. How-

ever, this requires tenants to specify their bandwidth de-
mands. Further, reserving network bandwidth leads to
fragmentation of the underlying network since spare ca-
pacity is not utilized.

3. LOCATION INDEPENDENT COSTS
This paper advocates that tenant cost should not de-

pend on where a tenant’s VMs are allocated within a
datacenter. To this end, we propose and evaluate a pric-
ing scheme that yields location independent costs.

Below we discuss a few pricing schemes and use a sim-
ple tenant job as a running example to explain them.
As part of the job, each tenant VM processes some lo-
cal data and sends L bytes of processed data over the
network to another VM for the same tenant.

3.1 Today’s world: VM-only Pricing
Today, tenants pay for VM occupancy. The price of a

VM is a flat $k per unit time.1 Hence, a MapReduce job
on N VMs costs $kNT , where T is the time to complete
the job. Note that the flat VM price gives the illusion
that the network is “free”. However, since the comple-
tion time T depends on network performance, the total
tenant cost (kNT ) has a hidden network component and
can vary with location.

For our example job, a VM that is able to transfer
its output at rate b will take L

b seconds to complete
and will cost $k ∗ L

b . This tenant cost depends on the
network performance achieved (i.e., b). Hence, VM-only
pricing does not yield location independent costs.

3.2 Network-only Pricing
A simple way to ensure location independent costs

is to charge tenants only for the data they transfer
between their VMs. Hence, for each VM, tenants are
charged per unit time based on the outbound traffic
rate. The price of a VM sending at rate b is $kb∗b, where
kb is the provider specified bandwidth charge. For our
example job, a VM transferring its output at rate b will
complete in L

b seconds and will cost kb ∗ b ∗ L
b = $kbL.

Such network-only pricing is independent of the net-
work performance achieved (i.e., b) and hence, location
independent. However, such pricing is not very prac-
tical since tenants do not pay for VM occupancy. For
instance, a tenant whose VMs do not generate any inter-
VM traffic would get the VMs for free!

3.3 Dominant Resource Pricing
A practical pricing scheme should include a VM oc-

cupancy component so that tenants pay for VM us-
age. Thus, the challenge is to incorporate an occupancy

1For Amazon EC2, k = $0.085/hr for small VMs. This does
not include storage and external data transfer costs that are
beyond the VM costs.
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Figure 1: Charging tenants for occupancy and
network transfers does not yield location inde-
pendence.
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Figure 2: Dominant resource pricing: charging
tenants for the greater of the occupancy and net-
work price.

charge while ensuring location independence. To illus-
trate this challenge, we first consider a simple scheme
where tenants are charged for occupancy and network
separately. The resulting price curve is shown in Fig-
ure 1 which assumes tenants pay a flat VM occupancy
charge ($kv per unit time) and a network charge that is
proportional to the bandwidth they achieve ($kb ∗ b per
unit time). Hence, the price for each VM is $(kv + kbb)
per unit time. For our example job, a VM that trans-
fers its output at rate b will cost (kv + kbb) ∗ L

b . This
cost depends on the network performance achieved and
hence, the pricing scheme is not location independent.

Instead, consider a pricing scheme where tenants are
charged based on the greater of the two prices– occu-
pancy and network price. Figure 2 shows the resulting
price curve as a function of the VM’s outbound traf-
fic rate. When a VM generates traffic at a rate lower
than kv

kb
(base bandwidth or Bbase), the VM occupancy

price dominates and tenants pay this flat price. How-
ever, when a VM generates traffic at a higher rate, the
VM price is proportional to the sending rate and hence,
the amount of data transferred. Overall, a VM sending
at rate b is priced as follows:

VM Price
unit time = kv, b < kv

kb

= kb ∗ b, b ≥ kv

kb

For our example job, a VM that transfers its output
at a rate b greater than base bandwidth costs kb∗b∗ Lb =
$kbL, which is independent of network performance. In
case the output is transferred at a lower rate, the VM
costs kvL

b . This cost depends on the network. However,
the provider can ensure location independence by guar-

anteeing that a VM is always able to send network traf-
fic at a rate greater than Bbase. If a VM still generates
traffic at a lower rate, it is due to the job characteris-
tics and local bottlenecks, and not a consequence of the
underlying network performance.

The pricing scheme above, combined with aggregate
bandwidth guarantees for VMs, results in location inde-
pendent costs. Note that, in effect, tenants are charged
for their bottleneck resource. When a VM does not use
up its guaranteed base bandwidth because the process-
ing or local I/O is the bottleneck, tenants pay for occu-
pancy. Alternatively, when the VM is network limited,
tenants pay based on the amount of data transferred.
Thus, we call this pricing scheme “Dominant Resource
Pricing” (DRP).2

3.4 Implementing DRP
A DRP realization should satisfy two main design

goals:
1. Base Bandwidth guarantee. Achieving loca-

tion independence with DRP requires a minor modifi-
cation to IaaS semantics: a VM, apart from dedicated
storage and processing, is also bundled with guaranteed
network bandwidth to other VMs for the same tenant.
Each VM can send and receive at base bandwidth, and
can thus be seen as being connected to the rest of the
datacenter by a virtual link whose capacity is Bbase.
This is akin to the hose model [19]. Note that two VMs
sending to the same destination VM may be bottle-
necked at the destination, and are only guaranteed to
get a combined rate of Bbase instead of 2Bbase. Con-
sequently, a tenant’s inter-VM traffic pattern can also
cause VMs to not utilize their guaranteed bandwidth.

2. Work conserving allocation. Tenants should
not be limited to sending only at the base bandwidth.
Any spare capacity should be used by network flows
from VMs that can send at higher rate.

Below we sketch a strawman design that satisfies these
goals. To guarantee the base bandwidth for tenants, the
allocation of their VMs to physical machines should ac-
count for the corresponding bandwidth requirements. In
recent work, Oktopus [14] presents algorithms for such
allocation. The key idea is to ensure that each network
link that connects a tenant’s VMs has enough capacity
to satisfy their bandwidth guarantees. The bandwidth
needed for a tenant on a link is the tenant’s bandwidth
quota on the link and depends on the number of VMs
for the tenant on either side of the link. The bandwidth
quota can, in turn, be used to guide the allocation of
VMs. This allocation algorithm is detailed in [14], and
is used by DRP to allocate VMs while satisfying goal 1.

The second goal requires that flows that can use spare

2The name is inspired by Dominant Resource Fairness [18]
which defines fairness for multi-resource settings in terms of
a user’s dominant share.
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capacity be allowed to do so. A proportionally fair way
to distribute a link’s spare capacity is to give each ten-
ant a fraction of the spare capacity that is proportional
to the tenant’s “quota” on the link. Consider a link of
capacity C and a set A of tenants whose VMs are send-
ing traffic across it. Proportional allocation implies that
the flows for a tenant i with bandwidth quota Qi on this
link should achieve an aggregate rate given by: (Band-
width Quota + Proportional share of spare capacity)
= Qi + (C −

∑
AQj) ∗

QiP
A Qj

= CQiP
A Qj

.
The analysis above shows that distributing a link’s

total capacity in proportion to tenant quotas for the
link ensures that the bandwidth guarantees for individ-
ual VMs are met and the spare capacity is distributed
in a fair fashion. Such allocation of link bandwidth can
be achieved through weighted fair queuing (WFQ) in
the network. Specifically, network switches are config-
ured with per-tenant weights on each of their ports.
The weight for a tenant is its quota on the outbound
link, as determined by the VM allocation algorithm,
and applies to all traffic from the tenant’s VMs. This
approach is work conserving since any unused capacity
is distributed amongst flows that can use it. Assuming
a proper WFQ implementation with per tenant queues,
this design also ensures that, irrespective of the trans-
port protocol used (UDP or TCP), a tenant’s traffic
cannot adversely impact other tenants.

3.5 Design Alternatives
The design sketch above relies on network support.

Switches need to be configured with weights for all ten-
ants whose traffic may traverse them. While the VM
allocation algorithm can minimize the number of ten-
ants whose flows traverse the core network, this may
still mean hundreds of traffic classes for core switches,
an order of magnitude more than what is supported by
today’s switches. Thus, DRP would require switches to
be modified to deal with the scale and churn of tenants.

Motivated by the deficiencies of the current design,
we are working on end host based approaches to as-
sign weights to tenant traffic. The fact that a single
entity owns a datacenter and can instrument all ma-
chines makes such an approach particularly attractive.
A few recent proposals follow this tact and implement
mechanisms on end hosts to achieve various bandwidth
sharing goals [14,15,20]. With DRP, the goal is to asso-
ciate a weight to traffic from all VMs for a tenant, and
share network bandwidth in a weighted fashion without
per-tenant state in the network.

Overall, we admit that many challenges remain. How-
ever, the thesis of this paper is the notion of location
independent pricing and what it brings to multi-tenant
environments. Thus, the rest of this paper focuses on
evaluating the benefits of DRP to illustrate that the
design exercise is worth pursuing.

4. PRELIMINARY RESULTS
We use simulations to evaluate DRP. While prelim-

inary, our results indicate that apart from decoupling
tenant costs from location, DRP can actually improve
tenant performance and reduce their costs.

4.1 Simulation setup
Our simulator coarsely models a multi-tenant data-

center. It uses three-level simple tree topology– racks of
40 machines with 1Gbps links connected using a hierar-
chy of switches. The results in this section involve a dat-
acenter with 16,000 machines and 4 VMs per machine,
resulting in 64,000 VM slots. The simulated physical
network has an oversubscription of 10:1, a conservative
value for today’s datacenters [10].
Tenant jobs. As with our example job in Section 3,
tenant jobs comprise tasks on individual VMs and a set
of flows transferring data between the tasks. Each ten-
ant task is a source and destination for one flow, and all
flows for a given tenant are of the same length. While
admittedly naive, we believe this is a good first-order
representation of the network component of real world
data processing jobs that often run in datacenters. The
number of VMs making up a job and the amount of
data being shuffled between these VMs are both expo-
nentially distributed with means of 50 and 50GB re-
spectively. The “ideal completion time” for a job is its
completion time if it were running in isolation. For a
job with L bytes of data to be shuffled between VMs,
the ideal completion time is L

1Gbps .
To capture the operation of today’s cloud datacen-

ters, we simulate tenant jobs arriving over time. We vary
the job arrival rate to vary the target occupancy of
the datacenter in terms of the number of VMs. Assum-
ing Poisson tenant arrivals with an arrival rate of λ, the
target occupancy in a datacenter with total M VM slots
is λN

M . L
1Gbps , where N is the mean VMs per job and L

is the mean amount of data shuffled. Tenant jobs that
cannot be accommodated on arrival are rejected.
Baseline scenario. We compare DRP against a Base-
line scenario representative of datacenter operation to-
day. With Baseline, tenant VMs are greedily allocated
close together. Further, tenant flow rates are given by
their max-min fair share. As a contrast, DRP involves
allocating VMs with base bandwidth guarantees [14].
Network bandwidth is distributed amongst tenants in a
proportionally fair fashion.

4.2 Performance Analysis
We simulate the arrival and execution of 20,000 ten-

ant jobs with varying target occupancy. Figure 3 shows
the fraction of rejected job requests. Baseline rejects
10-28% more jobs than DRP, even though DRP only
accepts a job if bandwidth guarantees of its VMs can
be satisfied. The improvement offered by DRP can be
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explained through the performance of individual jobs.
Figure 4 plots the percentiles for normalized completion
time of jobs. With DRP, the median completion time
increases by up to 50%. Part of the reason is that, com-
pared to Baseline, there are more jobs running concur-
rently and, hence, there is greater network contention.
However, the 95th-percentile completion time with DRP
is significantly less than Baseline (3-5x less), which demon-
strates that DRP reduces the disparity in job perfor-
mance. Further, DRP bounds the worst-case comple-
tion time. For instance, with DRP-100, VMs have an
aggregate bandwidth of at least 100Mbps, so the job
completion time can at worst be 10x the ideal comple-
tion time. Thus, by providing lower bounds on tenant
network performance and preventing outlier jobs, DRP
is actually able to accommodate more jobs.

4.3 Cost Analysis
We now analyze tenant costs. With Baseline, each

VM for a job costs $kT, where T is the job completion
time. We use k = $0.085/hr based on the price of Ama-
zon EC2 small VMs. With DRP, tenants are charged
based on the pricing model in Section 3.3. We assume
tenant VMs can generate data at sufficient rate, so a
VM transferring L bytes of data costs $kbL. The band-
width charge (kb) is determined based on provider rev-
enue neutrality. For each experiment, we calculate kb
such that the provider’s total revenue with DRP is the
same as with Baseline. For instance, for DRP-100 and
target occupancy = 75%, we find kb = $3.63*10−4/GB.
Figure 5 is a scatter plot of the total cost per VM for
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different jobs transferring varying amounts of data. For
Baseline, the VM cost depends on the job completion
time and hence, network performance. Since the latter
can vary significantly, VM costs for jobs shuffling the
same amount of data vary too. As a contrast, with DRP,
VM costs are do not depend on tenant location. Instead,
they are proportional to the amount of data transferred
between a tenant’s VMs.

Beyond predictable costs, DRP can actually reduce
tenant costs. Figure 6 shows percentiles for the ratio
of tenant costs with DRP to Baseline. At very low oc-
cupancy, median tenant cost with DRP is higher since
Baseline is able to ensure good performance for almost
all tenants. However, as the target occupancy increases,
tenants pay less with DRP. This is important since
providers like Amazon operate their datacenters at 70-
80% occupancy [21]. In the median case, tenants pay 7-
30% less. As before, this results from the fact that DRP
is able to accommodate more tenant jobs by avoiding
outliers. The resulting increase in system throughput,
in turn, lowers per tenant cost. Though the analysis
above is based on provider revenue neutrality, we also
consider a win-win scenario where the provider is able
to increase its revenue and still pass on cost benefits to
tenants. For instance, providers can increase their rev-
enue by 8% and reduce median tenant cost by 9% at an
occupancy of 75%.

5. DISCUSSION
The notion of location independent costs raises many

issues. Here we discuss a few concerns relevant to DRP.
Pricing complexity. At first glance, tenants may
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find the proposed pricing model less intuitive than to-
day’s VM-only pricing. With DRP, our goal was to en-
sure simple tenant costs, albeit at the expense of simple
pricing. Simplified total costs is what tenants with job-
like applications care most about.

We admit that today’s pricing model appears more
amenable to long-running, user-facing services (e.g., web-
sites) since the tenant monthly bill is fixed. However,
there is no lower bound on the network and hence, ap-
plication performance. With DRP, a tenant’s bill may
depend on the inter-VM traffic which, in turn, probably
depends on the number of user requests served. Many
cloud components like storage and external bandwidth
are already charged based on usage. Hence, even today,
part of a tenant’s bill depends on the popularity of their
service and with DRP, the same will apply to VM costs.

Usage pricing. With DRP, VMs are priced based
on occupancy while the network is priced based on us-
age. This is because the network is a shared resource.
Proposals like [10–12,14] turn the network into a dedi-
cated resource by guaranteeing the network bandwidth
for tenants, thus allowing for occupancy based network
pricing. However, this hurts datacenter efficiency since
spare network capacity is wasted. DRP avoids this.

Spurring innovation. DRP better aligns tenant and
provider interests than the status quo. Providers have
flexibility regarding distributing spare network capac-
ity; they are not obligated to divide it fairly. For in-
stance, tenant flows could be prioritized based on their
length which would cause the corresponding jobs to fin-
ish faster and free up VM slots for subsequent tenants.
Such network scheduling can improve provider through-
put and revenue by passing jobs faster through the sys-
tem. Providers may even pass on some benefits to ten-
ants in the form of reduced costs. In effect, DRP gives
providers an incentive to improve tenant performance;
as a contrast, it can be argued that today’s pricing re-
sults in a disincentive for providers to do so.

Provider flexibility. DRP offers a lot of flexibility
to providers. It allows for tiered pricing– various VM
classes (small, medium, . . .) with different occupancy
charge (kv1 < kv2 < . . .) and different base bandwidth
(kv1
kb

< kv2
kb

< . . .) can be offered. Similarly, providers
can implement spot pricing with DRP. The price of a
VM would be characterized by an occupancy charge
(kv(t)) that can vary over time to reflect the datacenter
utilization. Each VM still comes with the same base
bandwidth guaranty, so the bandwidth charge (kb(t))
will vary accordingly. As today, providers can use this
to improve overall utilization.

To summarize, this paper makes the case for location in-
dependent tenant costs and shows how charging tenants
for their bottleneck resource can achieve this. By pre-
venting jobs with very poor performance, such “fair”

pricing even improves overall datacenter performance
and can result in lower tenant costs. Moreover, by de-
coupling cost from performance, DRP aligns tenant in-
terests with those of the provider and encourages the
latter to innovate. While many implementation chal-
lenges remain to be addressed, the fact that DRP offers
predictable costs and can thus remove a significant hur-
dle to cloud adoption makes this a promising exercise.
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