
Fault Management Using the CONMan Abstraction
Hitesh Ballani and Paul Francis
Cornell University, Ithaca, NY

Email: {hitesh, francis}@cs.cornell.edu

Abstract—Fault management in networks is difficult. We argue
that a major contributor to the difficulty of debugging network
faults is the sheer volume of semantically anemic details exposed
by protocols. Unlike past approaches that try to cope with the
deluge of information exposed, in this paper we explore how to
reduce and structure the management information exposed by
data-plane protocols and devices to make them more amenable to
fault management. To this effect, we delineate two conditions that
the management interface of data-plane protocols should satisfy:
it should provide a structured description of protocol reality and
it should support what we call a “conservation of bytes” invariant.

Based on this, we propose an architecture wherein data-
plane protocols expose management information satisfying these
conditions. This allows management applications to detect, localize
and (possibly) resolve faults in a structured fashion. We discuss the
detection of a representative set of real-world faults to illustrate
our approach. We implemented these fault management features
into three protocols and built a management application that
uses the features to debug faults. Apart from serving as a proof
of concept, this exercise indicates that our proposal does indeed
simplify debugging of a large fraction of network faults.

I. INTRODUCTION

An important part of managing networks is the ability
to detect, localize and resolve faults. Fault management in
networks today varies from manual probing using simple tools
such as ping and traceroute to sophisticated packages such as
OpenView [23] and SMARTS [22] that are often used by ISPs
and large enterprises. While these packages are certainly useful
tools in the hands of experienced administrators, debugging
faults in networks still remains a black art relying heavily on
the domain knowledge of experts.

We believe that a major contributor to the difficulty of fault
management in networks is the sheer volume of semantically
anemic details exposed by protocols to the management
plane. This impacts debugging as follows:
(a). Difficulty of detection. Today, protocol MIBs (Management
Information Base) often contain myriad counters to indicate
statistics such as the number of packets sent and received,
packets dropped due to different kinds of errors, etc. Manage-
ment applications typically set SNMP traps on these counters
to generate alarms that indicate possible problems. However,
the error counters tend to have protocol intricacies embedded
in them and hence, it is difficult to come up with meaningful
and robust thresholds for them without protocol and network
details. The resulting spurious or redundant alarms represent
undue overhead for human managers and have resulted in a
number of proposals to address the problem [5,17,21]. Further,
many silent failures are not reflected in these counters and
hence, may go undetected [14].
(b). Difficulty of localization. The complex nature of the
management interface of protocols implies that it is diffi-
cult for management applications to understand the precise
operation of the underlying network. This, in turn, impedes

structured localization of faults. Instead, commercial network
fault management systems like [22,23] rely on rule-based
correlation of network alarms. Such an approach, like any
expert system, is restricted by the domain knowledge encoded
into the application rules [16]. Further, when combined with
the rapid pace of development and deployment of protocols
and devices, this implies that fault management systems tend
to lag behind the power curve [14].

Also, failures of protocols, devices and even links tend to
be inter-dependent. However, the web of dependencies is often
confined to the mind of the human administrator managing the
network [1] or to manually maintained databases [16]. This lack
of dependency maintenance impedes automated localization of
network faults [9,15].

As we detail in section VIII, a number of recent proposals
have tried to cope with the deluge of information exposed
by protocols and devices through novel management plane
algorithms. Here we explore the alternative tact of addressing
the aforementioned problems in the data-plane itself by reduc-
ing and structuring the management information exposed by
protocols. Specifically, we argue that in order to be amenable
to fault management, the management interface of protocols
should satisfy two conditions:
1) Structured description of protocol reality. The management

interface should detail the protocol operation, connectivity
and dependency in a structured and protocol independent
fashion. This would allow management applications to
understand the network operation and hence, debug faults
that disrupt proper network operation without domain-
specific knowledge.

2) Allow for invariant checks. “Conservation of bytes” is a
fundamental and trivial invariant governing the operation
of protocols and states that the inflow and outflow of
bytes into a module, a pair of connected modules and by
extension, the entire network should match up. Network
faults may result in the violation of this invariant and
hence, management applications should be able to use the
information exposed as part of the management interface
of protocols to verify if the invariant holds for them.

Today’s protocol MIBs don’t satisfy these conditions. The
MIBs are littered with low-level details that makes it very
difficult for management applications to understand the impact
of data-plane events on the protocol’s operation (condition
(1)). Further, it may seem that given these myriad details
and counters, condition (2) would be satisfied and it would
be possible for management applications to verify the byte-
conservation invariant for some, if not all, entities. To check
this, we studied the MIBs of five protocols (Ethernet [10],
IP [11], GRE [27], TCP [19], MPLS [25]) and in spite of the

use of protocol-specific information to decipher the meaning of
the exposed variables, we found that in none of the five cases
did we have enough information to perform the trivial check of
matching up the inflow and outflow of bytes through a given
protocol.

Guided by this, we propose a network architecture wherein
the management interface of data-plane protocols satisfies these
conditions. We satisfy the first condition by borrowing and
extending the protocol abstraction proposed as part of the
CONMan project [2]. To satisfy the second condition, we
require protocols to expose generic and mutually consistent
counters that are structurally related to each other. The fact that
the management application understands how they are related
allows it to use them to satisfy the byte-conservation invariant.
To this effect, this paper makes the following contributions:
• We define conservation of bytes, an invariant that holds

across all data-plane protocols and hence, can be used
to detect faulty protocol operation in a protocol-oblivious
fashion.

• We detail the information that devices and protocols should
expose as part of their management interface so as to satisfy
both the aforementioned conditions.

• We illustrate how management applications can utilise the
information exposed by protocols to detect and localize
connectivity faults, i.e. faults that impact the connectivity
between devices.

• Finally, we modified the kernel-level implementation of three
Linux protocols (IP, GRE and Ethernet) in accordance with
our proposal and implemented a management application
that can use the aforementioned features to detect faults that
may afflict the operation of these protocols. We inject real-
world faults into a testbed network and detail the use of this
management application to detect the faults.

II. CONMAN OVERVIEW

The first condition requires that management applications
be able to understand the network operation based on the
management interface of protocols. The CONMan project
proposed a management interface for protocols that allows just
this. Hence, the protocol features discussed in this paper build
upon the CONMan proposal. This section provides a very brief
overview of CONMan that suffices for the discussion in the
rest of the paper - the interested reader is referred to [2] for
more details. The CONMan architecture and by extension, the
architecture in this paper, consists of devices (routers, switches,
hosts, etc.) and one or more network managers (NMs). A NM
is a software entity that manages some or all of the network’s
devices. Each device in the network has a management agent
(MA) that is responsible for interacting with the protocols in
the device on one hand and the network’s NM on the other.
CONMan assumes that the network has a management channel
that is used by the NM for communicating with the devices.
This management channel may or may not operate over the
same physical links as used by the data-plane.

The key insight behind CONMan is that most data-plane
protocols have some basic characteristics that should suffice
for their management and it captures these basic characteristics
using a generic abstraction called the Module Abstraction. In
the abstraction, each protocol is modeled as a protocol module

with pipes connecting it to other modules, generic switching
capabilities, generic filtering capabilities, performance and se-
curity characteristics and certain dependencies. This protocol
abstraction was used by the CONMan proposal for network
configuration. In this paper, we assume that the network being
managed is configured using CONMan in the first place.
Beyond this, we extend the abstraction to allow the NM to
debug network faults.

Of the various abstraction components, we briefly describe
“pipes”, “switches” and “dependencies” here because of their
relevance to the discussion later. Up-Down pipes connect
modules to other modules above and below themselves in the
same device and can be created by the NM. The actual network
links are modeled as Physical pipes. Further, each pipe is
associated with one or more peer modules. For example, the
peer module for a down-pipe of a TCP module would be the
remote TCP module to which the down-pipe ultimately leads
to.

A module’s switch captures the module’s ability to pass
packets between up, down and physical pipes. These switches
can have a small number of basic configurations. For instance,
passing packets between down and up pipes ([down ⇒ up]
and [up ⇒ down] switching; eg. TCP module), [down ⇒
down] (eg. IP module with forwarding enabled), [up ⇒ up]
(eg. IP module with loopback functionality) represent a few
of these configurations. Finally, protocol modules may depend
on control-plane protocols for their operation and they express
these as dependencies. For instance, the IP module relies on
ARP for a peer’s MAC address and hence, each down-pipe for
the IP module is said to depend on the connectivity between
the corresponding ARP modules. This dependency is exposed
by the module in its abstraction.

As far as configuration is concerned, human managers in
CONMan only specify high-level goals to be achieved by the
management plane. Each device in the network uses the man-
agement channel to inform the NM of its physical connectivity,
the modules it contains and their abstractions. This provides the
NM with the real picture of the network. Given this picture and
the high-level goals, the NM builds a graph of inter-connected
protocol modules in various devices that would satisfy the
goals. This graph, hereon referred to as the connectivity graph,
captures how the modules should be connected and how
each module should operate. The NM can then invoke the
appropriate CONMan primitives (for instance, to create pipes,
switch rules, filter rules, etc.) at various modules and it is the
modules themselves that determine the low-level parameters
necessary for their operation.

III. FAULT CLASSIFICATION

As in CONMan, we assume that a network’s human manager
only specifies the high-level goals to be achieved by the
network. Hence, we define a fault scenario as a situation
wherein the network being managed does not satisfy specified
high-level goals. Such a scenario can result from one or more
primary faults each of which, in turn, may lead to zero or more
dependent faults.

A network’s high-level goals can vary a lot in complexity.
For the sake of concreteness, this paper assumes that the
high-level goal for the network is specified in the form of a

connectivity matrix that indicates the devices (or, the protocols
and applications in these devices) that should or should not
be able to communicate with each other. Given that the
connectivity matrix is the network’s goal, any scenario that
violates the matrix is a fault scenario. Consequently, the fault
scenarios discussed in the rest of the paper directly impact the
connectivity between devices.

Note that high-level goals may be more sophisticated and
hence, there can be other kinds of faults. For instance, the goal
may include the the performance parameters that the network
paths must satisfy. Actually, poor performance in a correctly
connected network is a very common fault scenario. While we
discuss such faults in section IX, the majority of this paper
restricts itself to debugging of connectivity faults.

Further, network faults can be classified based on their root-
cause [13] into (a) Hardware faults, (b) Software faults, (c)
Power faults, (d) Configuration faults and (e) External faults.
The techniques presented in this paper focus on intra-domain
faults and hence, don’t apply to fault family (e). Since human
managers in CONMan do not write low-level configuration
scripts, the possibility of configuration faults resulting from
human errors (which represent the dominant fraction of faults
today [13]) in CONMan is already very low. However, errors
in the CONMan software itself can lead to erroneous config-
uration. Hence, the techniques presented in the paper apply
directly only to faults of type (a), (b), (c) and some fraction of
class (d).

IV. PROTOCOL FEATURES FOR FAULT MANAGEMENT

In this section, we detail the operation of devices and the in-
formation that should be exposed by protocol implementations
as part of their management interface to satisfy the conditions
specified in section I.
A. Connectivity Reports

As mentioned in section II, devices in the network probe
their neighbors over the data-plane and periodically inform
the NM of their physical connectivity over the management
channel. This provides the NM with the network topology.
A device losing power or other faults afflicting the physical
connectivity between devices are thus reported to or can be
inferred by the NM.
B. Protocol Abstraction Reports

Protocols expose information about their operation to the
management plane using the CONMan abstraction. Over time,
as network events happen, a protocol’s low-level parameters
can change. The protocol implementation should ensure that
any changes to its low level parameters or its operational status
that impact the protocol’s abstraction are appropriately reflected
in the abstraction exposed and reported to the NM. Below we
give examples of this for a couple of CONMan abstraction
components:
(a). Pipes: An up-down pipe represents the association between
the two protocol modules it connects. Any change in the status
of the protocols that impacts this association should cause the
status of the corresponding pipe to change. For example, in
CONMan, the down pipe from a GRE module to the underlying
IP module represents a GRE-IP tunnel. Thus, any event that
leads the GRE tunnel interface to go down should cause the

deletion of the corresponding down pipe and the NM to be
informed of this change. Similarly, the down pipe between a
VLAN module and the underlying ETH module represents the
membership of an Ethernet port in a VLAN group. Hence, the
elimination of a port from a VLAN group should be notified
to the NM as the deletion of the corresponding pipe.

Note that we are not claiming that faults like the ones above
cannot be detected today. Of course, management applications
in the existing setup can set SNMP traps to get notifications
regarding the state of the tunnel interfaces, VLAN membership
and so on. However, such notifications lack semantics about
what they entail for the protocol and network operation. This
implies that the management application needs to be embedded
with the meaning and implications of protocol-specific events
such as VLAN group membership changes. As a contrast, the
pipe abstraction allows us to capture what such events mean for
the flow of packets in a protocol-oblivious fashion. Specifically,
the events above are reported to the NM as pipe deletions and
it can determine what this means for the network operation.
(b). Switches: A module’s switch rules specify how it sends
packets from one pipe to other pipes. The NM should be
informed of any changes to these rules. For instance, the
inability of a Linux host to “forward” packets at the IP layer
(/proc/sys/net/ipv4/ip_forward=0) implies that the
host’s IP module cannot switch packets from one down pipe
to the other (no [down ⇒ down] switching) and this should be
reported to the NM.

These abstraction reports ensure that the NM has knowledge
of the network’s current connectivity graph.

C. Protocol Counters

Not all protocol parameters are reflected in the protocol’s
abstraction. An undesirable change in such parameters may
disrupt the traversal of packets without showing up in the
abstraction. For instance, each Ethernet port on a device is
represented by an up-down pipe between the device’s ETH
module and the underlying PHY module. However, the NM
is not informed of low-level events, such as a change in the
port’s duplexity even though the change may cause a duplexity
mismatch with the Ethernet port at the other end and hence,
affect the device’s Ethernet connectivity.

Further, a hardware or a software bug might cause packets
to be dropped without any adverse settings of the low-level
parameters. This entails that the management plane should
be able to account for the flow of bytes through individual
protocols. Specifically, we note that most such faults violate a
fundamental and trivial invariant regarding the operation of pro-
tocols: the “conservation of bytes” invariant which essentially
says that all bytes entering, consumed by and exiting an entity
should match up. The “entity” here could be a single protocol, a
pair of connected protocols, a sequence of connected protocols
and by extension, the entire network. The NM should be able
to verify these invariants.

One way to achieve this is for each protocol to maintain
simple counters that can then be used to quantify the inflow and
outflow of bytes through it. We also note that the components
of the CONMan abstraction provide a very good framework
for these counters since the counters can be associated with

individual components and this would allow the NM to un-
derstand how the counters are related to each other. Hence,
we propose that protocol modules should expose the following
generic counters as part of their abstraction:
1) Snd (Si) and Rcv (Ri) counters indicating the number of

bytes sent and received by the module on each pipe i.
2) Snd-proto (Sp) and Rcv-proto (Rp) counters indicating

the number of protocol generated bytes sent and received
by the module. Protocol-generated bytes include protocol
headers, retransmissions, overhead due to operations like
encryption, bytes in additional copies of packets sent when
multicasting and broadcasting and any other bytes that are
generated as part of the protocol operation. The counters
can be negative; for instance, when the module compresses
data. These counters ensure that our proposal does not
place any restrictions on protocol design while allowing
the management plane to account for the flow of bytes in
a protocol oblivious fashion.

3) Snd-residual (Sr) and Rcv-residual (Rr) counters. Up-
down pipes between modules get created and deleted
over time. For instance, each up pipe for a TCP module
represents a TCP connection and hence, it exists as long
as the connection exists. Residual bytes account for the
bytes sent and received on deleted pipes and ensure that
modules only need to maintain pipe-specific state for active
up-down pipes. Hence, when a pipe i is deleted, the Si and
Ri counters are deleted too while the residual counters are
modified as follows: Sr += Si and Rr += Ri.

4) Dropped (D) counter indicating the number of bytes
dropped by the module. For instance, packets that have
been corrupted due to a duplex mismatch on an Ethernet
port and hence, are dropped by the ETH module con-
tribute to the module’s Dropped counter. Note that dropped
packets may not always represent an error scenario; for
example, filtered packets also contribute to these counters.

5) Buffered (B) counter indicating the number of bytes
buffered by the module.

6) Snd-dep-error (Si,j) and Rcv-dep-error (Ri,j) counters
indicating errors afflicting dependency j of pipe i. For
instance, an IP module has one down pipe for each of
its next-hops (i.e. any device that can be reached within
one IP hop). Further, as mentioned earlier, a down-pipe for
the IP module has a dependency on connectivity between
the ARP module of the host and that of the next-hop.
When the host’s IP module is not able to forward packets
to a next-hop due to ARP failure, the dropped packet,
apart from being added to the IP module’s Dropped
counter, also contributes to the Snd-dep-error counter for
the dependency of the corresponding down-pipe on ARP.

Protocol modules periodically report these counters to the
management agent of their device. However, for a module’s
counters to be comparable to each other, they must represent
the protocol state at a given point of time and hence, there
is a need to synchronize these counters. This is discussed in
section VII.

V. FAULT MANAGEMENT

The network’s management plane, including the NM and the
management agents (MAs) on the individual devices, use the

aforementioned protocol features to detect network faults. This
section describes such detection while we illustrate it through
example faults in the next section.
A. Detection by management plane

1) Faults appearing in the connectivity graph: The first kind
of faults detected by the NM are the ones that appear in the
connectivity graph itself. Network devices send both periodic
and event-based reports regarding their connectivity and the
abstraction for their protocols. Thus, after any event, the NM
modifies its connectivity graph accordingly and can detect any
faults that adversely impact the desired connectivity.

2) Faults violating byte-conservation invariant: The man-
agement plane can verify if the byte-conservation invariant
holds for individual protocol modules to detect hardware and
software bugs that cause packets to get dropped without being
accounted for in one of the counters. To this effect, the MA
of a device ensures that for each protocol module, the total
number of non-header bytes received (after accounting for the
dropped and buffered packets) is the same as the total number
of non-header bytes sent. Thus, for each protocol module, the
MA checks to ensure that the following equation is satisfied
and if not, it informs the NM.

(Total bytes received - = (Total bytes sent +
Dropped bytes - Protocol Buffered bytes - Protocol

specific bytes received) specific bytes sent)
∑

i

(Ri) + Rr − D − Rp =
∑

i

(Si) + Sr + B − Sp

Of course, it may be possible for a fault, apart from causing
packets to be dropped, to result in the module’s Snd/Rcv
counters to not be updated or be updated improperly such
that the consistency equation still holds. To account for this,
the MA checks for byte-conservation across adjacent modules.
Given that it has already verified that bytes are conserved by
individual modules, it can verify conservation for a pair of
connected modules by checking that for each pipe between the
modules in question, all bytes sent by one module are received
by the other and vice versa. Specifically, the MA compares Snd

and Rcv counters for the modules at the end of each up-down
and physical pipe and informs the NM if they don’t match.
This check ensures that unless the bug impacts the Snd and
Rcv pipe counters at multiple modules, it is detected.

3) Dependent faults: The NM uses dependency error coun-
ters as an indicator of a fault resulting from a separate root
fault. Specifically, when a module reports an increment in the
value of Si,j , the NM knows that a fault afflicts dependency j
of pipe i for the module in question. The same applies to the
Ri,j counter.

B. Localization by management plane
By making protocol modules expose information that can

be used by the management plane to detect faults, we also
ensure that the device and the protocol responsible for the
detected fault is either apparent or trivial to localize. First,
for power faults and any other faults afflicting the physical
connectivity between devices, the NM can use its knowledge
of the network topology and correlate updates from different
devices to localize the fault to a single physical link or the two

A

B E C D

Internet

Switch X Switch Y
Router R

1 2
1 2 3 4 5 1 2 3 4 5

3

Fig. 1. A small test network used to illustrate the example faults.
A B C D E Internet

A 3 3 7 7 3
B 3 3 7 3 3
C 3 3 7 7 3
D 7 7 7 3 7
E 7 3 7 3 3
Internet 3 3 3 7 7

TABLE I
CONNECTIVITY MATRIX TO BE ENFORCED FOR THE TEST NETWORK IN

FIGURE 1 - ENTRIES IN THE MATRIX DENOTE IF CONNECTIVITY SHOULD
(3) OR SHOULD NOT (7) BE ALLOWED.

devices the link connects. Second, a fault detected based on the
abstraction of a module, including the violation of invariants,
is caused by the module itself and hence, there is no need for
localization. Finally, in case of dependent faults, the NM may
need to do additional work to determine the root fault. Such
localization is explained in the next section.
C. Resolution by management plane

The underlying cause for faults in categories (a)-(d) cannot
be addressed in an automated fashion. For instance, a software
fault will have to be reported to the network’s human manager
and will need to be resolved by the device vendor. However,
once it detects and localizes a fault, the management plane can
attempt to mitigate the fault’s impact on the network’s high-
level goals.

VI. FAULT MANAGEMENT EXAMPLES

We now explain the proposed fault management techniques
through a few examples. We used debugging manuals of
various vendors, bug reports and other sources to collect a set
of eleven real-world faults that are representative of fault types
(a)–(d) and are listed below. We illustrate these faults using the
small test network shown in figure 1. The network comprises
of a router, a couple of switches and five end-hosts. Table I
shows the connectivity matrix to be achieved in this network.
We also assume that the network has an automated network
manager (NM) that configures the network elements using
CONMan such that the matrix is satisfied. Specifically, the NM
creates VLANs on switch X, creates the routing and filtering
rules on router R and configures the end hosts using CONMan
primitives. The relevant part of the module-level connectivity
graph for the configured network is shown in figure 2 (the
figure does not show the NM or the management channel).
(a). Hardware Faults.

Fault H1: Wire cut. The physical wire connecting host A
to switch X gets cut off.

Fault H2: Jammed Line Card. The line card of router
R corresponding to interface 2 jams up and fails to dequeue
packets [14].

Fault H3: Non-functional ports. Under heavy traffic,
some ports of switch Y (a Catalyst 5000) stop transmitting
frames [24].

(b). Software Faults.
Fault S1: VLAN partitioning. A software bug in switch

X causes individual VLANs to be partitioned into isolated
segments. In the past, such a bug impacted Cisco Catalyst 4000
switches [24].

Fault S2: Duplex mismatch. A bug in the NIC driver of host
B leads to a duplex mismatch between the Ethernet interface of
host B and the port of switch X to which it is connected. This,
in turn, results in performance issues, intermittent connectivity,
and loss of communication [24].

Fault S3: Configuration wipe. Rebooting switch X causes
it to lose all existing VLAN configuration. Thus, when the
switch boots up, hosts A, B and C are able to access host D
since they are no longer in separate VLANs. Such configuration
wipe problems afflicted a model of Linksys switches [26].
(c). Power Faults.

Fault P1: Power supply. A problem with the power supply
of router R causes it to shut down.
(d). Configuration Faults.

Fault C1: Improper filtering. The NM aims to block
connectivity between hosts A and E by configuring an IP
filter rule in router R that filters packets between interface
1 and interface 2. However, due to a software error in the
NM implementation, it does not account for the fact that the
rule also (inadvertently) blocks packets from host B to E even
though such packets should be allowed. Note that this is a
configuration fault since the data-plane software is correct, it
is just configured incorrectly.

Fault C2: MTU problem. The MTU of the Ethernet
interface of host A does not account for the VLAN tags added
by switch X. Thus, MTU-sized packets originating at host A
and with an IP “Don’t Fragment” flag set are dropped at X.

Further, since the fault at an element can also lead to faults
in the operation of protocols dependent on the element in
question, we have dependent faults:

Fault D1: ARP Failure. Fault S1 may disconnect host A
and B even though they are in the same VLAN. This, in turn,
can cause ARP queries issued by host A for host B to fail and
thus, impact IP-level connectivity between A and B.

Fault D2: DHCP Failure. Fault P1 shuts down router R and
hence, the DHCP server for the network. If host A requires a
new IP address while router R is down, its request will fail and
this will impact A’s IP connectivity.

A couple of aspects of these faults deserve comment. First,
we don’t claim these faults to be representative of all possible
network faults. Instead, they include examples of the different
kinds of internal faults and serve to illustrate how the CONMan
management plane deals with network faults. Second, protocols
in networks today are already designed to be resilient against
some of the example faults. For instance, routing and switching
algorithms account for faults like P1, H1 and H3 and ensure
that the data plane is routed around these. As a contrast,
most of the other example faults involve implementation errors
that, while infrequent, may not lead to alarms in the existing
framework.
A. Detection and Localization

We discuss how the NM detects and localises these example
faults.

PHY PHYPHY
PHY PHY

VLAN

ETH

IP

ETH

PHY PHYPHYPHY PHY

ETH

A B C D

Switch X

Switch Y

E

ETH

PHY1

2

3

4

5 321 1 2 3 4 5

VLAN-1 = {A,B,C,R}
VLAN-2 = {D,R}

VLANs on switch X Phy Pipe Up-Down Pipe

Pipe p2

Pipe p3

PHY
ETH

IP ARP

PHY
ETH

IP ARP

PHY
ETH

IP ARP

PHY(d)
ETH(c)

IP ARP(a)

PHY(f)
ETH(e)

IP ARP(b)

PHY(g) PHY(j)

Pipe p1

UDP

DHCP-c

2 4

UDP

DHCP-c

UDP

DHCP-c

UDP

DHCP-c

UDP

DHCP-s

Internet

UDP

DHCP-c

Router R

VLAN (v)

ETH(h)

Pipe p4

Fig. 2. Connectivity graph for the test network showing how the modules in
various devices are connected so as to satisfy the desired connectivity matrix.

1) Faults appearing in the connectivity graph: H1, H3, P1,
S3, D2.
– Fault H3: Lets assume that heavy traffic causes port 2 of
switch Y to stop transmitting frames. Depending on the precise
nature of the fault, the PHY module corresponding to port 2
may or may not realise that pipe p2 is inoperational. However,
the MA of switch Y is unable to probe host E and informs the
NM of this change in the switch’s connectivity. Based on this
connectivity update, the NM determines that a fault afflicts the
connectivity of switch Y to host E. Given the physical nature of
the problem, the NM is unable to resolve it. However, the NM
can determine the fault’s impact; any paths in the connectivity
graph that include pipe p2 are affected and hence, none of the
other hosts will be able to access host E. Faults H1 and P1 are
detected similarly by the NM based on connectivity updates.
– Fault S3: When switch X reboots and comes back up,
it informs the NM of the abstraction for the modules in it
including how the modules are connected. The switch’s loss
of VLAN configuration is apparent in the abstraction of the
ETH and VLAN modules since the VLAN module is no longer
connected to the underlying ETH module. The NM can resolve
the fault by reinvoking the CONMan commands to create up-
down pipes between the VLAN and the ETH module in switch
X which, in turn, recreates the VLAN configuration.

2) Faults violating byte-conservation invariant: H2 and S1.
– Fault H2: When router R’s IP module receives a packet, it
increments the Rcv counter for the pipe corresponding to the
packet and queues the packet for further processing. However,
the fault causes the module to fail to dequeue some of these
packets and this is not reflected in the module’s Dropped

counter. Hence, the number of bytes received is more than the
bytes sent. This inconsistency is detected by router R’s MA
and the NM is informed of the fault.

It is possible that the fault also impacts how the module’s
other counters are updated. For instance, apart from not de-
queuing packets off pipe p3, the module may not reflect the
packets in the Rp3 counter. Thus, byte-conservation holds for
the module. Even so, the fault would be detected when the MA
checks for (Sp3)ETH

= (Rp3)IP
and finds that the number of

bytes sent by the ETH module onto p3 {(Sp3)ETH
} does not

match up with the number of bytes received by the IP module
on p3 {(Rp3)IP

}.
3) Dependent Faults (not already detected): D1.

– Fault D1: In figure 2, host A should be able to directly reach

host B since they are part of the same VLAN. In CONMan,
such connectivity is captured through a down pipe (P4) for the
IP module of host A that has the IP module of host B as its peer.
Further, the module’s abstraction includes the fact that down
pipe p4 has a dependency requiring that the corresponding ARP
modules in hosts A and B (labeled as a and b in the figure) be
able to reach each other. Thus, increments for the Sp4,1 counter
of host A’s IP module provide the NM with an indication of
a fault along the path from module a to b. The NM already
knows the sequence of modules that make up the path between
a and b, labeled as a, c, d, g, h, v, h, j, f, e, b in figure 2. To
localise the fault, the NM queries these modules’ abstraction
and finds that the invariant does not hold for module v. This
implies that the root fault afflicts module v. Indeed, the root
fault that led to fault D1 is fault S1 that impacts the VLANs on
switch X. Note that this fault may already have been detected
by the MA of the switch and the NM informed about it.
B. Remaining faults

1) Detection by modules: Faults that either cause changes in
the connectivity graph or involve bugs that cause packets to be
dropped abnormally are detected by the NM. However, proto-
cols can also drop packets due to a number of valid factors and
these packets are reflected in the Dropped counter exposed in
the protocol’s abstraction. Determining if the dropped packets
indicate a fault requires protocol-specific details. However, we
are averse to embedding such protocol-specific information in
our management plane.

Consider fault S2 – the duplex mismatch between host
B’s NIC and switch X’s port results in a high number of
Ethernet frame collisions and hence, malformed frames. These
are reflected in the Dropped counter of the PHY modules
representing host B’s NIC and switch X’s port. However,
collisions of Ethernet frames can also occur due to other
reasons. For instance, if both the NIC and the switch port
are operating in half duplex mode, some number of collisions
are bound to happen. Specifically, the Cisco switch debugging
manual states that a switch port should observe almost no
collisions when the ports to it are in full duplex mode while
a 1% collision rate is acceptable when any of the ports is in
half-duplex mode [24]. Hence, for the NM to set a threshold
on the number of collisions that is acceptable, it would have
be aware of protocol-specific details such as the notion of port
“duplexity” and its implications.

In most such cases, the protocol module itself has all the
necessary information to determine thresholds for the error
counters that represent an anomaly and hence, indicate the
presence of a fault. In the example above, the PHY module
of a device is aware of its duplex configuration and can use
the management channel to determine the duplex mode of
its peer module. Thus, the module can determine if a given
number of collisions represent an anomaly on its own. We
propose that such self-detection be embedded into the protocol
implementation. Consequently, when data-plane protocols drop
packets due to some kind of (non-dependency, non queue-
overflow and non-filtering) fault, apart from reflecting this in
the Dropped counter, they either try to resolve the fault on their
own and if not, indicate the fault to the NM that raises an alarm
for human intervention. Fault C2 can similarly be detected by

Faults ⇒ Avoided Detected by CONMan Not detected by CONMan
Human
Errors

Connectivity Graph
Faults

Invariant
Violation Faults

Dependency
Counter Faults

Protocol Parameter Faults
(the ones that don’t appear
in abstraction)

Remaining Faults (external faults,
many control-plane faults and bugs
in CONMan software)

Detection by - NM MA NM Protocol Module Humans/Applications
Detection timescale - Machine timescale (seconds) Humans timescale (hours to days)
Localization - For dependent faults,

NM localizes root
fault

Not needed NM localizes the
root fault

Not needed NM (future work)

Resolution - NM routes around the fault except the ones that can be resolved by
modifying the abstraction of the faulty module (eg. S3)

Protocol Module attempts
resolution

NM routes around the fault

Example. - P1, H1, H3, S3, D2 H2, S1 D1 S2, C2 C1

TABLE II
DEBUGGING FAULTS

the module itself.
2) Complimentary techniques: Table II summarizes how

different kinds of faults are detected, localized and resolved in
our architecture. While the presented approach does simplify
fault management for the management plane, not all network
faults can be detected with it. First, the framework described
above is restricted to the devices within a domain. Second, the
CONMan abstraction does not apply to control-plane protocols
and hence, faults resulting from the specifics of control proto-
cols may not be detected. For example, the NM may rely on a
routing protocol for routing between the devices and any faults
resulting from the operation of the routing protocol will not be
detected unless they explicitly appear in the abstraction of the
IP modules whose switch rules are being set by the routing
protocol.

Finally, faults in the CONMan component of both the data
and the management plane are unlikely to be detected. For
instance, in the case of fault C1, the filter rule erroneously
blocks connectivity between hosts B and E and while the
fault (the invalid filter rule) does appear in the abstraction, it
wouldn’t be detected by the NM that configured the rule in the
first place.

In these instances, we have to rely on user and application
alarms for detection of faults. Consequently, such faults would
be detected on human timescales. Further, such detection
entails additional localization logic, for instance the cross-layer
traceroute functionality proposed as part of [6] to determine
the protocol that drops the packets between a given pair of
application modules.

VII. IMPLEMENTATION

In this section, we discuss our implementation of CONMan
protocols and a NM and detail the use of the NM to detect
faults in a test network.
A. Management channel and Connectivity updates

The testbed used for the experiments described in this
section comprises of Linux-based PCs operating as end-hosts
and routers with Ethernet as the connecting medium. Given
CONMan’s reliance on the presence of a management channel
that allows for communication between the devices in the
network and the network’s NM, we implemented a straw-man
management channel that can operate on the same underlying
physical network as used by the data plane using the techniques
proposed by the 4D project [8].

The MA on each device periodically sends raw Ethernet
frames as data-plane beacons to discover the device’s imme-
diate neighbors and track the device’s physical connectivity to
them. The MA then informs the NM of its neighbors over the

management channel and sends “connectivity updates” when
the device’s connectivity changes. Consequently, the NM can
generate the current network topology.
B. Protocol Implementation

We modified the kernel-level (Linux 2.6.14) implementation
of 3 protocols – IP, Ethernet, and GRE – to build features
required for fault management. We also built a user-mode MA
that interfaces with these protocol modules and the NM. Below
we briefly mention the features supported by the CONMan pro-
tocol modules and illustrate these with appropriate examples:
– Abstraction Updates. The protocol modules expose their
CONMan abstraction and appropriately reflect any changes to
their low-level parameters that impact the module’s abstraction
as abstraction updates. For instance, in case of the IP module,
up pipes represent the module’s association with different
transport protocols. Hence, as the Linux GRE-IP module
(ip_gre.ko) is inserted and deleted from the kernel, the up
pipe from the IP module to the GRE module is created and
deleted. In case of the GRE module, a down pipe represents
the module’s association with an underlying network protocol.
Thus, a change in the status of a GRE-IP tunnel is reflected in
the corresponding down pipe.
– Dependencies. The pipes of a module may have dependen-
cies. These are exposed as part of the module’s abstraction.
For instance, the IP module has two dependencies for its down
pipes. First, an IP address must be assigned to the module
before its down pipes can be created. Second, a down pipe
requires connectivity between the ARP module of the device
and that of the pipe’s peer. Our implementation ensures that any
change in the abstraction due to these dependencies is reported.
For the example above, lack of an IP address for the IP module
causes its down pipes to be deleted.
– Counters. Each protocol module maintains the counters
discussed in section IV-C. Our implementation of the counters
is similar to the way protocols already maintain and export
various SNMP statistics regarding their operation. Periodically,
the MA queries the modules in its device for their counters and
checks if the invariant holds. Note that the fact that each of the
three protocol implementations we considered reside within
a single thread in the Linux kernel implies that no special
synchronization is needed to ensure that the counters from a
given module are in a consistent and comparable state when
they are exported.

However, when comparing counters across modules, syn-
chronization is needed. For instance, before comparison, the
Snd/Rcv counters exported by a module for each of its pipes
need to be synchronized with the counters from the module
at the other end of the pipe. To achieve this, when the MA

queries a GRE module for the counters of a down pipe to an
underlying IP module, the GRE module effectively sends its
counter values to the IP module over the pipe in question as a
marked packet. The IP module recognizes this marked packet,
retrieves the values of the counters at the GRE end of the pipe
and removes the packet from the data stream. Finally, the IP
module sends the counters for both ends of the pipe to the
MA.

C. NM Implementation
We also implemented a NM that maintains a connectivity

graph for the network and changes this graph as its gets con-
nectivity and abstraction updates. The NM can thus search for
faults by checking whether the connectivity matrix is satisfied
by current connectivity graph. Also, in case of dependent faults,
the NM tries to localize the problem by querying all the
modules along the suspect path for their status.

D. Fault Management in a test network
In order to validate our implementation, we used our NM for

debugging faults in a test network with several hosts running
our CONMan protocols. This network is the same as shown
in figure 1 with PC-routers in place of the two switches. We
injected the faults described in section VI into the network. The
lack of switches in the network and other limitations imply that
we were unable to reproduce fault scenarios H2, H3, S1, S3,
C2 and D1. However, we did introduce a few alternate faults:

Fault H2’. To emulate fault H2, we forced the IP protocol
to discard a fraction of incoming packets after they have
been received and the Rcv counter for the incoming pipe
incremented.

Fault H2”. We modified fault H2’ such that packets were
dropped even before they were added to the Rcv counter.

Fault S3’. Fault S3 involves loss of VLAN configuration
on switch X. We emulate a similar fault involving the loss
of GRE configuration at host A that brings down the GRE-IP
tunnel from host A to host E.

Overall, we injected eight faults into the network: H1, H2’,
H2”, S2, S3’, P1, C1, D2. The results of this exercise were
along expected lines with all faults except C1 being detected
and localized:
– Faults H1, S3’, P1, and D2 showed up in the connectivity
graph and were detected by the NM.
– Faults H2’ and H2” were detected by the NM based on
violation of the byte-conservation invariant.
– Fault S2 was detected by the ETH module using self
detection.
– Fault C1 was not detected.

We admit that such injection of synthetic faults is a very
limited validation exercise. However, we think that it provides
tangible evidence that CONMan does indeed reduce the burden
on management applications since the NM, working with just
a connectivity graph, pipes and other abstraction elements, is
able to debug the faults in an algorithmic fashion. Further, our
NM is mostly protocol agnostic with the notion of IP addresses
being used by the IP module being the only protocol-specific
information embedded in the implementation.

To contrast this with the existing set-up, we studied how
management applications today would debug such faults (of
course, there might be other ways of detection).
– Faults H1, P1. Assuming that the network is running an
intra-domain routing protocol, the management application will
have to track routing updates to detect the fault. For instance,
for OSPF, the management application will have to listen
and interpret “Link State Updates”. However, if the topology
permits, the routing protocol will route around the fault on its
own.
– Fault S2, S3’ and D2 would require that management
applications be hard-coded with various events they need to
track. These events include:
• S2 causes the Ethernet driver on our Linux PCs to generate

an error in a log file stating “eth0: Transmit error, Tx status
register 82. Probably a duplex mismatch . . .”.

• S3’ generates an SNMP trap for deletion of the ifEntry
(interface entry) corresponding to the tunnel interface in the
ifTable (interface table) of the Interface MIB of the device.

• D2 leads to an error in a log file stating “. . . No DHCPOF-
FERS received. No working leases in persistent database
. . .”.

Apart from the protocol details required to track these events
in the first place, the fact that the management plane doesn’t
understand how protocols are connected to or dependent on
each other implies that it is difficult to determine the impact
of a fault even when it is detected.
– Fault H2’, H2” and C1 would be very hard to detect based
on protocol MIBs today. Instead, the faults would probably be
detected based on user complaints or application performance.

VIII. RELATED WORK

There has been a tremendous amount of work towards
network fault detection, the most relevant of which we men-
tion here. We discussed both commercial [22,23] and re-
search [5,17,21] fault management systems in section I. While
most of these focus on data-plane events, recent efforts [20]
have tried to incorporate control-plane information into the
correlation process. Another approach to debug network faults
is to use a network model to reason about normal and abnor-
mal network behavior [4,7]. Instead of constructing a model
out of diverse and detailed protocol interfaces, we argue for
the protocols to model themselves so as to be amenable to
management.

An important aspect of fault management is the dependen-
cies between protocols and devices. The notion of SRLGs
capture such dependencies at the optical layer and have been
combined with IP fault notifications to detect low-level network
faults [12,16]. Sherlock [1] discovers the dependency graph
governing the network while both [1] and [9] use such a
graph to detect and localize network faults. We require that
protocols and devices themselves report dependency and status
information. The byte-conservation invariant has been used
in many proposals to prove protocol properties, for instance,
the WATCHERS protocol [3] used it to detect compromised
routers. We propose a novel use of this invariant for fault
detection.

IX. DISCUSSION

Scalability. Perhaps the most important concern regarding
the architecture presented in this paper is its scalability with
network size and complexity. In a network with a lot of devices
and a number of protocols per device, the total number of pro-
tocol modules being managed can easily grow to a substantial
amount. Some aspects of our design, such as the fact that the
invariant checks are done by a device’s MA itself, are guided
by this concern. However, we would like to point out that this
problem is not qualitatively different from the scalability of
today’s management set-up. Today, protocols expose detailed
MIBs riddled with protocol-specific parameters and other low-
level counters. Management applications typically register for
the events they wish to be notified for and the same can be done
with our approach. Further, proposals to improve the scalability
of automated agents within today’s SNMP framework [18]
apply directly to our management plane.

Beyond connectivity faults. This paper is restricted to faults
that impact connectivity, i.e. packets either go through or
not. Other faults may impact performance, may involve the
load on devices or might even concern the security of the
communication provided. While challenging, we think that the
fault management approach presented here can be extended
to these faults and we intend to pursue this in the future.
For instance, the CONMan abstraction of a protocol contains
information about basic performance parameters, including the
latency, jitter and bandwidth of various pipes and statistics
about the module’s queues that could be used by the NM to
detect violation of high-level goals that include performance
and load constraints.

Management-plane faults. Having the management channel
independent of the data-plane would seem to suggest that a
fault afflicting the data-plane doesn’t impact the management
channel. However, the management channel may share the
underlying physical links with the data-plane. Further, imple-
mentation realities might introduce dependencies between the
management and the data-plane. For instance, in order to avoid
changing the Ethernet driver on devices, our implementation of
the management channel operates on top of Ethernet. Hence,
in our implementation, faults affecting the physical links and
the Ethernet layer impact the management channel. However,
the NM can trivially detect such faults based on the lack of
management plane updates from one or more devices and can
use its knowledge of the network topology to localize the fault.
More insidious are faults that afflict the management software
itself and their detection was discussed in section VI-B.

Evaluation. Finally, a crucial question is how to quantify
the advantages of our approach over the status quo. The
main benefit of the proposed abstraction and fault management
techniques is that they reduce the burden on management
applications by making it easier to detect faults in an algo-
rithmic fashion. Such “ease-of-debugging” and “management
application complexity” is difficult to measure but is critical for
our argument. A few metrics that we are currently considering
for such an evaluation include the fraction of faults detected,
the communication overhead imposed, detection times, total
number of parameters needed, or even the lines of code of
management applications.

To summarise, this paper describes a management interface
for data-plane protocols that it is conducive to debugging of
faults. We have shown how this interface can be used to detect
synthetically introduced faults in protocols. This represents a
very simple illustration of the proposed approach and there are
many questions that remain unanswered. In spite of this, we
believe that this paper represents a promising first stab at the
basic idea of making the data and the management plane equal
partners in the challenging task of network fault management.

ACKNOWLEDGEMENTS
This work was partially supported by NSF Grants 0338750

and 0626978.
REFERENCES

[1] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S., MALTZ, D. A.,
AND ZHANG, M. Towards highly reliable enterprise network services via
inference of multi-level dependencies. In Proc. of ACM SIGCOMM (2007).

[2] BALLANI, H., AND FRANCIS, P. CONMan: A Step towards Network Man-
ageability. In Proc. of ACM SIGCOMM (2007).

[3] BRADLEY, K. A., CHEUNG, S., MUKHERJEE, B., OLSSON, R. A., AND
PUKETZA, N. Detecting Disruptive Routers: A Distributed Network Moni-
toring Approach. In Proc. of IEEE Security and Privacy (Oakland) (1998).

[4] BRUGNONI, S., BRUNO, G., MANIONE, R., MONTARIOLO, E., PASCHETTA,
E., AND SISTO, L. An Expert System for Real Time Fault Diagnosis of
the Italian Telecommunications Network. In Proc. of the IFIP Symposium on
Integrated Network Management (1993).

[5] CHAO, C. S., YANG, D. L., AND LIU, A. C. An automated fault diagnosis
system using hierarchical reasoning and alarm correlation. J. Netw. Syst.
Manage. 9, 2 (2001).

[6] FONSECA, R., PORTER, G., KATZ, R., SHENKER, S., AND STOICA, I. X-
Trace: A Pervasive Network Tracing Framework. In Proc. of USENIX/ACM
NSDI (2007).

[7] FORMAN, G., JAIN, M., MANSOURI-SAMANI, M., MARTINKA, J., AND
SNOEREN, A. Automated whole-system diagnosis of distributed services using
model-based reasoning, 1998.

[8] GREENBERG, A., HJALMTYSSON, G., MALTZ, D. A., MEYERS, A., REX-
FORD, J., XIE, G., YAN, H., ZHAN, J., AND ZHANG, H. A clean slate 4D
approach to network control and management. ACM SIGCOMM Computer
Communications Review (October 2005).

[9] GRUSCHKE, B. Integrated event management: Event correlation using depen-
dency graphs. In Proc. of Workshop on Distributed Systems: Operations and
Management (1998).

[10] J. FLICK. RFC 3635 - Definitions of Managed Objects for the Ethernet-like
Interface Types, Sep 2003.

[11] K. MCCLOGHRIE. RFC 2011 - SNMPv2 Management Information Base for
the Internet Protocol using SMIv2, Nov 1996.

[12] KANDULA, S., KATABI, D., AND VASSEUR, J.-P. Shrink: a tool for failure
diagnosis in IP networks. In Proc. of ACM SIGCOMM workshop on Mining
network data (MineNet) (2005).

[13] KERRAVALA, Z. Enterprise Networking and Computing : the Need for
Configuration Management. Yankee Group report, January 2004.

[14] KOMPELLA, R., YATES, J., GREENBERG, A., AND SNOEREN, A. C. De-
tection and Localization of Network Blackholes . In Proc. of IEEE Infocom
(2007).

[15] KOMPELLA, R. R., GREENBERG, A., REXFORD, J., SNOEREN, A. C., AND
YATES, J. Cross-layer Visibility as a Service. In Proc. of workshop on Hot
Topics in Networks (2005).

[16] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNOEREN, A. C. IP
Fault Localization Via Risk Modeling . In Proc. of 2nd Symp. on Networked
Systems Design and Implementation (NSDI) (2005).

[17] LIU, G., MOK, A., AND YANG, E. Composite events for network event
correlation. In Proc. of Integrated Network Management (1999).

[18] PHAM, V. A., AND KARMOUCH, A. Mobile Software Agents: An Overview.
IEEE/ACM Trans. Netw. 36, 7 (1998).

[19] R. RAGHUNARAYAN. RFC 4022 - MIB for the TCP, Mar 2005.
[20] ROUGHAN, M., GRIFFIN, T., MAO, Z. M., GREENBERG, A., AND FREE-

MAN, B. IP forwarding anomalies and improving their detection using
multiple data sources. In Proc. of the ACM SIGCOMM workshop on Network
troubleshooting (NetT) (2004).

[21] WU, P., BHATNAGAR, R., EPSHTEIN, L., BHANDARU, M., AND SHI, Z.
Alarm correlation engine (ACE). In Proc. of NOMS (1998).

[22] EMC Smarts Family. http://www.emc.com/products/software/smarts/smarts
family/.

[23] HP OpenView. www.openview.hp.com/.
[24] Troubleshooting Cisco Catalyst Switches. , April 2007. http://www.cisco.com/

warp/public/473/46.pdf.
[25] Juniper MPLS MIB, Dec 2007. http://www.juniper.net/techpubs/software/

junos/junos42/swconfig-install42/html/snmp-mibs3.html.
[26] Linksys Community Forum, Apr 2007. http://forums.linksys.com/linksys/

board/message?board.id=Switches&message.id=400.
[27] Wellfleet GRE MIB, Dec 2007. http://www.oidview.com/mibs/18/

Wellfleet-GRE-MIB.html.

