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ABSTRACT

The soft real-time nature of large scale web applications in
today’s datacenters, combined with their distributed work-
flow, leads to deadlines being associated with the datacenter
application traffic. A network flow is useful, and contributes
to application throughput and operator revenue if, and only
if, it completes within its deadline. Today’s transport pro-
tocols (TCP included), given their Internet origins, are ag-
nostic to such flow deadlines. Instead, they strive to share
network resources fairly. We show that this can hurt appli-
cation performance.

Motivated by these observations, and other (previously
known) deficiencies of TCP in the datacenter environment,
this paper presents the design and implementation of D3, a
deadline-aware control protocol that is customized for the
datacenter environment. D3 uses explicit rate control to
apportion bandwidth according to flow deadlines. Evalua-
tion from a 19-node, two-tier datacenter testbed shows that
D3, even without any deadline information, easily outper-
forms TCP in terms of short flow latency and burst toler-
ance. Further, by utilizing deadline information, D3 effec-
tively doubles the peak load that the datacenter network can
support.

Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks]: Network Protocols
General Terms: Algorithms, Design, Performance
Keywords: Online services, Datacenter, SLA, Deadline,
rate control

1. INTRODUCTION
The proliferation of datacenters over the past few years

has been primarily driven by the rapid emergence of user-
facing online services. Web search, retail, advertisement,
social networking and recommendation systems represent a
few prominent examples of such services.

While very different in functionality, these services share a
couple of common underlying themes. First is their soft real
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time nature resulting from the need to serve users in a timely
fashion. Consequently, today’s online services have service
level agreements (SLAs) baked into their operation [10,16,24].
User requests are to be satisfied within a specified latency
target; when the time expires, responses, irrespective of their
completeness, are shipped out. However, the completeness
of the responses directly governs their quality and in turn,
operator revenue [17]. Second, the mantra of horizontal scal-
ability entails that online services have a partition-aggregate
workflow with user requests being partitioned amongst (mul-
tiple) layers of workers whose results are then aggregated to
form the response [10].

The combination of latency targets for datacenter appli-
cations and their distributed workflow has implications for
traffic inside the datacenter. Application latency targets cas-
cade to targets for workers at each layer; targets in the region
of 10 to 100ms are common [4], which in turn, yield targets
for network communication between the workers. Specifi-
cally, for any network flow initiated by these workers, there
is an associated deadline. The flow is useful and contributes
to the application throughput if, and only if, it completes
within the deadline.

Today’s datacenter networks, given their Internet origins,
are oblivious to any such implications of the application de-
sign. Specifically, the congestion control (TCP) and flow
scheduling mechanisms (FIFO queuing) used in datacenters
are unaware of flow deadlines and hence, strive to optimize
network-level metrics: maximize network throughput while
achieving fairness. This mismatch can severely impact appli-
cation performance; this is best illustrated through a couple
of simple examples:
– Case for unfair sharing: Consider two flows that share
a bottleneck link; one flow has a tighter deadline than the
other. As shown in figure 1, with today’s setup, TCP strives
for fairness and the flows finish at similar times.1 How-
ever, only one flow makes its deadline and is included in the
user response. Apart from hurting application performance,
this wastes valuable network resources on a non-contributing
flow. Alternatively, given explicit information about flow
deadlines, the network can distribute bandwidth unequally
to meet the deadlines.
– Case for flow quenching: Consider a common application
setting involving multiple servers responding to an aggre-
gator simultaneously. The resulting network flows share a
bottleneck link and have the same deadline. Further, as-

1We use TCP as a running example since it is used in data-
centers today. However, our arguments apply to other TCP
variants and proposals like DCTCP [4], XCP [19], etc.
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Figure 1: Two flows (f1, f2) with different deadlines
(d1, d2). The thickness of a flow line represents the
rate allocated to it. Awareness of deadlines can be
used to ensure they are met.
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Figure 2: Multiple flows with the same deadline (d).
The bottleneck capacity cannot satisfy the deadline
if all six flows proceed. Quenching one flow ensures
that the others finish before the deadline.

sume that congestion on the bottleneck link is such that the
aggregate capacity available to these flows is not enough to
finish all the flows before the deadline. Figure 2 shows that
with today’s setup, all flows will receive their fair share of
the bandwidth, finish at similar times and hence, miss the
deadline. This, in turn, results in an empty response to the
end user. Given flow deadlines, it may be possible to deter-
mine that the network is congested and quench some flows
to ensure that the remaining flows do meet the deadline.

Both these examples reflect a tension between the func-
tionality offered by a deadline agnostic network and appli-
cation goals. This tension is above and beyond the known
deficiencies of TCP in the datacenter environment. These in-
clude the incast problem resulting from bursts of flows [8,23],
and the queuing and buffer pressure induced by a traffic mix
that includes long flows [4].

However, the goal of a deadline-aware datacenter network
poses unique challenges:

1. Deadlines are associated with flows, not packets. All
packets of a flow need to arrive before the deadline.

2. Deadlines for flows can vary significantly. For example,
online services like Bing and Google include flows with a
continuum of deadlines (including some that do not have
a deadline). Further, datacenters host multiple services
with diverse traffic patterns. This, combined with the
previous challenge, rules out traditional scheduling solu-
tions, such as simple prioritization of flows based on their
length and deadlines (EDF scheduling [21]).

3. Most flows are very short (<50KB) and RTTs minimal
(≈300µsec). Consequently, reaction time-scales are short,
and centralized, or heavy weight mechanisms to reserve
bandwidth for flows are impractical.

In this paper, we present D3, a Deadline-Driven Delivery
control protocol, that addresses the aforementioned chal-
lenges. Inspired by proposals to manage network congestion

through explicit rate control [11,19], D3 explores the feasibil-
ity of exploiting deadline information to control the rate at
which endhosts introduce traffic in the network. Specifically,
applications expose the flow deadline and size information
at flow initiation time. Endhosts use this information to
request rates from routers along the data path to the des-
tination. Routers thus allocate sending rates to flows to
greedily satisfy as many deadlines as possible.

Despite the fact that flows get assigned different rates,
instead of fair share, D3 does not require routers to maintain
per-flow state. By capitalizing on the nature of trust in
the datacenter environment, both the state regarding flow
sending rates and rate policing are delegated to endhosts.
Routers only maintain simple aggregate counters. Further,
our design ensures that rate assignments behave like “leases”
instead of reservations, and are thus unaffected by host or
router failures.

To this effect, this paper makes three main contributions:

• We present the case for utilizing flow deadline informa-
tion to apportion bandwidth in datacenters.

• We present the design, implementation and evaluation of
D3, a congestion control protocol that makes datacenter
networks deadline aware. Results from our testbed de-
ployment show that D3 can effectively double the peak
load that a datacenter can support.

• We show that apart from being deadline-aware, D3 per-
forms well as a congestion control protocol for datacenter
networks in its own right. Even without any deadline in-
formation, D3 outperforms TCP in supporting the mix
of short and long flows observed in datacenter networks.

While we are convinced of the benefits of tailoring dat-
acenter network design to the soft real time nature of dat-
acenter applications, we also realize that the design space
for such a deadline-aware network is vast. There exists a
large body of work for satisfying application demands in the
Internet. While we discuss these proposals in Section 3, the
D3 design presented here is heavily shaped by the peculiar-
ities of the datacenter environment — its challenges (lots
of very short flows, tiny RTTs, etc.) and luxuries (trusted
environment, limited legacy concerns, etc.). We believe that
D3 represents a good first step towards a datacenter network
stack that is optimized for application requirements and not
a retrofitted Internet design.

2. BACKGROUND: TODAY’S

DATACENTERS
In this section, we provide a characterization of today’s

datacenters, highlighting specific features that influence D3

design.

2.1 Datacenter applications
Partition-aggregate. Today’s large-scale, user facing web
applications achieve horizontal scalability by partitioning
the task of responding to users amongst worker machines
(possibly at multiple layers). This partition-aggregate struc-
ture is shown in Figure 3, and applies to many web applica-
tions like search [4], social networks [6], and recommenda-
tion systems [10]. Even data processing services like MapRe-
duce [9] and Dryad [18] follow this model.



Figure 3: An example of the partition aggregate
model with the associated component deadlines in
the parentheses.

Application deadlines. The interactive nature of web
applications means that latency is key. Customer studies
guide the time in which users need to be responded to [20],
and after accounting for wide-area network and rendering
delays, applications typically have an SLA of 200-300ms to
complete their operation and ship out the user reply [10].
These application SLAs lead to SLAs for workers at each
layer of the partition aggregate hierarchy. The worker SLAs
mean that network flows carrying queries and responses to
and from the workers have deadlines (see Figure 3). Any
network flow that does not complete by its deadline is not
included in the response and typically hurts the response
quality, not to mention wastes network bandwidth. Ulti-
mately, this affects operator revenue; for example, an added
latency of 100ms costs Amazon 1% of sales [17]. Hence,
network flows have deadlines and these deadlines are (im-
plicitly) baked into all stages of the application operation.

Deadline variability. Worker processing times can vary
significantly. For instance, with search, workers operate on
different parts of the index, execute different search algo-
rithms, return varying number of response items, etc. This
translates to varying flow deadlines. Datacenter traffic itself
further contributes to deadline variability. We mentioned
the short query and response flows between workers. Be-
yond this, much datacenter traffic comprises of time sensi-
tive, short messages (50KB to 1MB) that update the con-
trol state at the workers and long background flows (5KB to
50MB) that move fresh data to the workers [4]. Of course,
the precise traffic pattern varies across applications and dat-
acenters. A Google datacenter running MapReduce jobs will
have primarily long flows, some of which may carry dead-
lines. Hence, today’s datacenters have a diverse mix of flows
with widely varying deadlines. Some flows, like background
flows, may not have deadlines.

Missed deadlines. To quantify the prevalence of missed
deadlines in today’s datacenters, we use measurements of
flow completion times in datacenters [4]. We were unable
to obtain flow deadline information, and resort to captur-
ing their high variability by assuming that deadlines are ex-
ponentially distributed. Figure 4 shows the percentage of
flows that meet their deadlines with varying mean for the
deadline distribution. We find that even with lax deadlines
(mean=40ms), more than 7% of flows miss their deadline.
Our evaluation (section 6) shows that this results from net-
work inefficiencies. Application designers struggle to cope
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Figure 4: Deadlines met (%) based on datacenter
flow completion times.

with the impact of such inefficiencies [4], and this might
mean artificially limiting the peak load a datacenter can sup-
port so that application SLAs are met. Hence, a significant
fraction of flow deadlines are missed in today’s datacenters.

Flow sizes. Since deadlines are associated with flows, all
packets of a flow need to arrive before its deadline. Thus,
a-priori knowledge of the flow size is important. Indeed,
for most interactive web applications today, the size of net-
work flows initiated by workers and aggregators is known in
advance. As a specific example, in web search, queries to
workers are fixed in size while responses essentially include
the top-k matching index records (where k is specified in the
query). Thus, the size of the response flow is known to the
application code at the worker even before it begins process-
ing. The same holds for many other building block services
like key-value stores [6,10], data processing [9,18], etc. Even
for applications where this condition does not hold, the ap-
plication designer can typically provide a good estimate of
the expected flow sizes. Hence, many web applications have
knowledge of the flow size at flow initiation time.

2.2 TCP in Datacenters
The problems resulting from the use of TCP in datacen-

ters are well documented [8,23]. Bursts of concurrent flows
that are all too common with the partition aggregate appli-
cation structure can cause a severe drop in network through-
put (incast). Beyond this, the presence of long flows, when
combined with TCP’s tendency to drive queues to losses,
hurts the latency of query-response flows. These problems
have placed artificial limitations on application design, with
designers resorting to modifying application workflow to ad-
dress the problems [4].2

Motivated by these issues, recent proposals have devel-
oped novel congestion control protocols or even moved to
UDP to address the problems [4,22]. These protocols aim
to ensure: (i) low latency for short flows, even in the face
of bursts, and (ii) good utilization for long flows. We con-
cur that this should be the baseline for any new datacenter
transport protocol and aim to achieve these goals. We fur-
ther argue that these minimum requirements should ideally
be combined with the ability to ensure that the largest pos-
sible fraction of flows meet their deadlines. Finally, many
application level solutions (like SEDA [25]) deal with vari-
able application load. However, they are not well suited for
network/transport problems since the datacenter network is
shared amongst multiple applications. Further, applications
do not have visibility into the network state (congestion, fail-

2Restrictions on the fan-out factor for aggregators and the
size of the response flows from workers to aggregator are a
couple of examples of the limitations imposed.
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Figure 5: Application throughput with varying
number of flows across a single bottleneck link and
moderate deadlines. Confidence intervals are within
1% of the presented values.

ures, etc.). On the contrary, a deadline-aware network can
complement load-aware applications by explicitly honoring
their demands.

3. DESIGN SPACE AND MOTIVATION
The past work for satisfying application deadlines in the

Internet can be categorized in two broad classes. The first
class of solutions involve packet scheduling in the network
based on deadlines. An example of such scheduling is Ear-
liest Deadline First (EDF) [21] wherein routers prioritize
packets based on their per-hop deadlines. EDF is an opti-
mal scheduling discipline in that if a set of flow deadlines
can be satisfied under any discipline, EDF can satisfy them
too. The second solution category involves rate reservations.
A deadline flow with size s and deadline d can be satis-
fied by reserving rate r = s

d
. Rate reservation mechanisms

have been extensively studied. For example, ATM sup-
ported Constant Bit Rate (CBR) traffic. In packet switched
networks, efforts in both industry (IntServ, DiffServ) and
academia [5,12] have explored mechanisms to reserve band-
width or at least, guarantee performance.
Value of deadline awareness. Given this existing body of
work, we attempt through simple Monte Carlo simulations,
to build some intuition regarding the (possible) benefits of
these approaches over fair sharing used in datacenters today.

Consider a 1Gbps link carrying several flows with varying
deadlines. Flow parameters (such as the size and the fraction
of short and long flows) are chosen to be consistent with
typical datacenters [4]. For the flows with deadlines, the
deadlines are chosen to be exponentially distributed around
20ms (tight), 30ms (moderate) and 40ms (lax). To capture
the lack of application value of flows that miss their deadline,
we use application throughput or the number of flows that
meet their deadline as the performance metric of interest.

Using this simple simulation setup, we evaluate three“ideal”
bandwidth allocation schemes: (i) Fair-share, where the link
bandwidth is allocated evenly amongst all current flows and
represents the best-case scenario for today’s deadline ag-
nostic protocols like TCP, DCTCP [4], XCP [19], etc. (ii)
EDF, representing the first broad class of deadline aware
solutions, where the flow with the earliest deadline receives
all the bandwidth until it finishes, and (iii) Rate reservation
(i.e., the second category), where flows, in the order of their
arrival, reserve the rate needed to meet their deadline. In
contrast to fair-share, the latter two approaches are deadline
aware.

Figure 5 shows the application throughput for the three
approaches with moderate deadlines (see [26] for similar

results with tight and lax deadlines). As the number of
flows increases, deadline-aware approaches significantly out-
perform fair sharing. Perhaps most important is the fact
that they can support three to five times as many flows as
fair share without missing any deadline (application through-
put=100%). This, in effect, redefines the peak loads at
which a datacenter can operate without impacting the user
experience. Hence, deadline-aware approaches have a lot to
offer towards datacenter performance. However, practical
challenges remain for both types of solutions, scheduling as
well as reservations.

For the former class, we use EDF as an example to explain
its limitations, though our arguments are general. EDF is
packet based. It works on per-hop packet deadlines while
datacenter applications have end-to-end flow deadlines. As
a result, even though EDF is optimal when the deadlines
can be satisfied, when there is congestion, EDF can actually
drive the network towards congestive collapse (see figure for
tight deadlines in [26]). Second and perhaps more impor-
tantly, EDF still needs to be complemented by an endhost
rate control design that will ensure that routers have the
right packets to schedule. Designing such a distributed rate
control scheme is far from trivial. Finally, EDF requires
priority queuing at routers. Our testbed experiments in
Section 6 illustrate some of these limitations for a simple
priority scheme.

For the latter class, reservation schemes are too heavy
weight for the datacenter environment where most flows are
short. Further, unlike real-time traffic on the Internet, dat-
acenter flows do not require a “constant” rate. Reservation
schemes ignore this flexibility and reduce network efficiency,
especially given the dynamics on datacenter networks, where
network conditions change very fast (e.g., tiny RTTs, large
bursts of short flows).

Overall, these limitations motivate the need for a practi-
cal datacenter congestion control protocol that, on the one
hand, ensures flows meet their deadlines, but, on the other,
avoids packet scheduling and explicit reservations.

4. D3 DESIGN
The discussion in the two previous sections leads to the

following goals for datacenter congestion control:

1. Maximize application throughput: The protocol should
strive to maximize the number of flows that satisfy their
deadlines and hence, contribute to application through-
put.

2. Burst tolerance: Application workflows often lead to flow
bursts, and the network should be able to accommodate
these.

3. High utilization: For flows without deadlines, the proto-
col should maximize network throughput.

D3 is designed to achieve these goals. Beyond these ex-
plicit goals, D3 accounts for the luxuries and challenges of
the datacenter environment. For instance, an important lux-
ury is the fact that the datacenter is a homogenous environ-
ment owned by a single entity. Consequently, incremental
deployment, backwards compatibility, and being friendly to
legacy protocols are non-goals.

The key insight guiding D3 design is the following: given a
flow’s size and deadline, one can determine the rate needed



to satisfy the flow deadline. Endhosts can thus ask the net-
work for the required rate. There already exist protocols
for explicit rate control wherein routers assign sending rates
to endhosts [11,19]. With D3, we extend these schemes to
assign flows with rates based on their deadlines, instead of
the fair share.

Assumptions. Based on the previous discussion, our de-
sign assumes that the flow size and deadline information are
available at flow initiation time. Further, we also assume
that per-flow paths are static.

4.1 Rate control
With D3, applications expose the size and deadline infor-

mation when initiating a deadline flow. The source endhost
uses this to request a desired rate, r. Given a flow of size
s and deadline d, the initial desired rate is given by r = s

d
.

This rate request, carried in the packet header, traverses the
routers along the path to the destination. Each router as-
signs an allocated rate that is fed back to the source through
the acknowledgement packet on the reverse path. The source
thus receives a vector of allocated rates, one for each router
along the path. The sending rate is the minimum of the al-
located rates. The source sends data at this rate for a RTT
while piggybacking a rate request for the next RTT on one
of the data packets.

Note however that neither does a flow need, nor does it
obtain a reservation for a specific sending rate throughout
its duration. The rate that the network can offer varies with
traffic load and hence, each source must periodically (in our
case, every RTT) ask the network for a new allocation. Since
the actual rate allocated by the network can be more or less
than the desired rate, endhosts update the desired rate as
the flow progresses based on the deadline and the remaining
flow size.

4.2 Rate allocation
For each of their outgoing interfaces, routers receive rate

requests from flows with deadlines. Beyond this, there are
flows without deadlines, where r = 0. Hence, the rate allo-
cation problem is defined as: Given rate requests, a router
needs to allocate rates to flows so as to maximize the number
of deadlines satisfied (goal 1) and fully utilize the network
capacity (goal 3). In a dynamic setting, this rate allocation
problem is NP-complete [7].

We adopt a greedy approach to allocate rates. When a
router receives a rate request packet with desired rate r, it
strives to assign at least r. If the router has spare capacity
after satisfying rate requests for all deadline flows, it dis-
tributes the spare capacity fairly amongst all current flows.
Hence, when the router capacity is more than the capac-
ity needed to satisfy all deadline flows, the allocated rate a
given to a flow is:

• For a deadline flow with desired rate r, a = (r+fs), where
fs is the fair share of the spare capacity after satisfying
deadline flow requests.

• For a non-deadline flow, a = fs.

We note that distributing the spare capacity between dead-
line and non-deadline flows allows us to balance the com-
peting goals 1 and 3. Assigning deadline flows with a rate
greater than their desired rate ensures that their subsequent
rate requests will be lower and the network will be able to

satisfy future deadline flows. At the same time, assigning
non-deadline flows with a share of the spare capacity en-
sures that they make progress and network utilization re-
mains high.

However, in case the router does not have enough capacity
to satisfy all deadline flows, it greedily tries to satisfy the
rate requests for as many deadline flows as possible. The
remaining flows, deadline and non-deadline, are assigned a
base rate that allows them to send a header-only packet per
RTT and hence, request rates in the future. For deadline
flows, such low assignments will cause the desired rate to
increase. The endhosts can thus decide whether to give up
on flows based on an ever increasing desired rate. This is
further discussed in Section 6.1.3.

4.3 Router operation
The rate allocation description above assumes the router

has the rate requests for all flows at the same point in time.
In reality, the router needs to make allocation decisions in
an online, dynamic setting, i.e., rate requests are spread over
time, and flows start and finish. To achieve this, the rate
allocation operates in a slotted fashion (from the perspective
of the endhosts). The rate allocated to a flow is valid for the
next RTT, after which the flow must request again. A rate
request at time t serves two purposes: (1). It requires the
router to assign at+1, the allocated rate for the next RTT,
and (2). It returns at, the allocation for the current RTT.

To achieve (1), the router needs to track its existing al-
locations. Consequently, routers maintain three simple, ag-
gregate counters for each interface:

• N: number of flows traversing the interface. Routers use
flow initiation and termination packets (TCP SYN/FIN)
to increment and decrement N respectively.3

• Demand counter (D): sum of the desired rates for dead-
line flows. This represents the total demand imposed by
flows with deadlines.

• Allocation counter (A): sum of allocated rates. This is
the current total allocation.

To achieve (2), the router must know the current rate allo-
cated to the flow. In a naive design, a router could maintain
rate allocations for each active flow through it. However,
since most deadline flows are very short, such an approach
is too heavy-weight, not to mention router memory inten-
sive. We avoid the need for per-flow state on routers by
relying on endhosts to convey rate allocations for each flow.
Specifically, each rate request packet, apart from the desired
rate rt+1, contains the rate requested in the previous inter-
val (rt) and a vector of the rates allocated in the previous
interval ([at]). Each element in the vector corresponds to
the rate allocated by a router along the path in the previous
interval. The encoding of these in the rate request packet
header is described in Section 5.

For topologies with multiple paths between endhosts [13]
[1,2,15], D3 relies on ECMP, VLB and other existing mech-
anisms used with TCP to ensure that a given flow follows a

3Note that past rate control schemes [11,19] approximate
N as C/R, where C is the interface capacity and R is the
current rate being assigned to flows. Yet, D3 does not assign
the same rate to each flow and this approximation is not
applicable.



single path. Adapting D3 to use multiple paths for a single
flow requires additional mechanisms and is beyond the scope
of this work.

Given this, we can now describe how packets are pro-
cessed by routers. Routers have no notion of flow RTTs.
Packets without rate request headers are forwarded just as
today. Snippet 1 shows how a router processes a rate re-
quest packet. It applies to both deadline and non-deadline
flows (for the latter, desired rate rt+1 is 0). The router first
uses the packet header information to perform bookkeeping.
This includes the flow returning its current allocation (line
3). Lines 7-13 implement the rate allocation scheme (Sec-
tion 4.2) where the router calculates at+1, the rate to be
allocated to the flow. The router adds this to the packet
header and forwards the packet.

Snippet 1 Rate request processing at interval t

Packet contains: Desired rate rt+1, and past information
rt and at. Link capacity is C.

Router calculates: Rate allocated to flow (at+1).
1: //For new flows only
2: if (new flow flag set) N = N + 1
3: A = A−at //Return current allocation
4: D = D−rt + rt+1 //Update demand counter

//Calculate left capacity
5: left capacity = C − A

//Calculate fair share
6: fs = (C − D)/N

7: if left capacity > rt+1 then
8: //Enough capacity to satisfy request
9: at+1 = rt+1 +fs

10: else
11: //Not enough capacity to satisfy request
12: at+1 = left capacity
13: end if

//Flows get at least base rate
14: at+1 = max(at+1, base rate)

//Update allocation counter
15: A = A+ at+1

Of particular interest is the scenario where the router does
not have enough capacity to satisfy a rate request (lines 11-
12). This can occur in a couple of scenarios. First, the cumu-
lative rate required by existing deadline flows, represented
by the demand counter, may exceed the router capacity. In
this case, the router simply satisfies as many requests as
possible in the order of their arrival. In the second scenario,
the demand does not exceed the capacity but fair share al-
locations to existing flows imply that when the rate request
arrives, there is not enough spare capacity. However, the
increased demand causes the fair share assigned to the sub-
sequent rate requests to be reduced (line 6). Consequently,
when the deadline flow in question requests for a rate in
the next interval, the router should be able to satisfy the
request.

4.4 Good utilization and low queuing
The rate given by a router to a flow is based on the as-

sumption that the flow is bottlenecked at the router. In a
multihop network, this may not be true. To account for bot-
tlenecks that occur earlier along the path, a router ensures
that its allocation is never more than that of the previous

router. This information is available in the rate allocation
vector being carried in the packet header. However, the flow
may still be bottlenecked downstream from the router and
may not be able to utilize its allocation.

Further, the veracity of the allocation counter maintained
by a router depends on endhosts returning their allocations.
When a flow ends, the final rate request packet carrying the
FIN flag returns the flow’s allocated rate. While endhosts
are trusted to follow the protocol properly, failures and bugs
do happen. This will cause the router to over-estimate the
allocated rate, and, as a result, penalize the performance of
active flows.

The aforementioned problems impact router utilization.
On the other hand, a burst of new flows can cause the router
to temporarily allocate more bandwidth than its capacity,
which results in queuing. To account for all these cases, we
borrow from [11,19] and periodically adjust the router ca-
pacity based on observed utilization and queuing as follows:

C(t + T ) = C(t) + α(C(t) −
u(t)

T
) − β(

q

T
)

where, C is router capacity at time t, T is the update in-
terval, u is bytes sent over the past interval, q is instan-
taneous queue size and α, β are chosen for stability and
performance.4

Consequently, when there is under-utilization (u/T < C),
the router compensates by allocating more total capacity in
the next interval, while when there is queuing (q(t) > 0), the
allocations reduce. Apart from addressing the downstream
bottleneck problem, this ensures that the counters main-
tained by routers are soft state and divergence from reality
does not impact correctness. The failure of endhosts and
routers may cause flows to not return their allocation. How-
ever, the resulting drop in utilization drives up the capacity
and hence, the allocation counters do not have to be con-
sistent with reality. The router, during periods of low load,
resets its counters to return to a consistent state. Even in
an extreme worst case scenario, where bugs at endhosts lead
to incorrect rate requests, this will only cause a degradation
in the performance of the application in question, but will
have no further effects in the operation of the router or the
network.

4.5 Burst tolerance
Bursts of flows are common in datacenters. Such bursts

are particularly challenging because of tiny RTTs in the dat-
acenter. With a typical RTT of 300µs, a new flow sending
even just one 1500-byte packet per RTT equates to a send
rate of 40Mbps! Most TCP implementations shipping to-
day start with a send window of two packets and hence, a
mere 12-13 new flows can cause queuing and packet loss on
a 1Gbps link. This has been observed in past work [8,23]
and is also present our experiments.

With D3, a new flow starts with a rate request packet with
the SYN flag set. Such a request causes N to be incremented
and reduces the fair share for flows. However, pre-existing
flows may already have been allocated a larger fair share rate

4The α, β values are chosen according to the discussion
in [11] where the stability of this controller was shown, and
are set to 0.1 and 1 in our implementation. The update
interval T should be larger than the datacenter propagation
RTT; in our implementation it is set to 800µs. The equation
assumes at least one flow is bottlenecked on the link.



(N was less when the earlier rate requests were processed).
Hence, allocating each new flow with its proper fair share can
cause the router to allocate an aggregate rate larger than its
capacity, especially when a burst of new flows arrives.

We rely on D3’s ability to “pause” flows by assigning them
the base rate to alleviate bursts. When a new flow starts, the
fair share assigned to its rate request is set to base rate. For
non-deadline flows, this effectively asks them to pause for a
RTT and not send any data packets. The sender however
does send a packet with only the rate request (i.e., a header-
only packet) in the next RTT and the router assigns it with
a fair share as normal. This implies that a new non-deadline
flow does not make progress for an extra RTT at startup.
However, such flows are typically long. Further, RTTs are
minimal, and this approach trades-off a minor overhead in
bandwidth and latency (one RTT ∼ 300µs) for a lot of burst
tolerance. Our evaluation shows that this vastly improves
D3’s ability to cope with flow bursts over the state of the
art. Additionally, this does not impact deadline flows much
because the router still tries to honor their desired rate.

5. IMPLEMENTATION
We have created an endhost-based stack and a proof-of-

concept router that support the D3 protocol. This paper
focuses on the congestion control aspects of D3 but our im-
plementation provides a complete transport protocol that
provides reliable, in-order delivery of packets. As with TCP,
reliability is achieved through sequence numbers for data
packets, acknowledgements from receivers, timer-based re-
transmissions and flow control.

On endhosts, D3 is exposed to applications through an ex-
tended Sockets-like API. The extensions allow applications
to specify the flow length and deadline when a socket is
created. The core logic for D3, including the rate control
scheme, runs in user space. We have a kernel driver that is
bound to the Ethernet interface exposed by the NIC driver.
The kernel driver efficiently marshals packets between NIC
and the user-level stack.

The router is implemented on a server-grade PC and im-
plements a shared buffer, store and forward architecture. To
be consistent with shallow buffers in today’s datacenters,
the router has a buffer of 128KB per NIC. The router uses
the same kernel driver as the endhosts, except the driver is
bound to multiple Ethernet interfaces. All incoming packets
pass to a user space process, which processes and forwards
them on the appropriate interface. The design of the ker-
nel driver and user-space application support zero-copy of
packets.
Router overhead. To keep per-packet overhead low in
the router, we use integer arithmetic for all rate calcula-
tions. Although each packet traverses the user-kernel space
boundary, we are able to sustain four links at full duplex line
rate. Specifically, the average packet processing time was less
than 1µs (0.208µs), and was indistinguishable from normal
packet forwarding in user-space. Thus, D3 imposes minimal
overhead on the forwarding path and the performance of our
prototype leads us to believe that it is feasible to implement
D3 in a commodity router.
Packet header. The D3 request and rate feedback packet
header is shown in Figure 6. The congestion header includes
the desired rate rt+1, an index into the allocation vector
and the current allocation vector ([at+1]). The header also
includes the allocations for the previous RTT so that the

Desired rate Index Allocation Vector

... Allocation Vector

Scale

factor Desired rate

Previous Previous Allocation

            Vector

... Previous Allocation Vector

Feedback Allocation Vector

Feedback Allocation Vector

0 8 16 24Bit Offset

Current

fields

Previous

fields

Feedback

fields

Figure 6: Congestion header for rate request and
feedback packets.
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ACK/RRQ/data  (t+1)

data  (t+1)

ACK/RRQ  (t+1)

FIN/RRQ/data  (t+n)

FIN/RRQ  (t+n)

Sender Receiver

(1)

(2)

(3)

(4)

(5)

(6)

Figure 7: Packet exchange with D3. RRQ is Rate
Request. Text in parenthesis is the current RTT
interval.

routers can update their relevant counters - the desired rate
rt and the vector of rates allocated by the routers ([at]).
Finally, the header carries rate feedback to the destination
- a vector of rates allocated by the routers for reverse traffic
from the destination to the source.

All rates are in Bytes/µs and hence, can be encoded in
one byte; 1Gbps equates to a value of 125. The scale factor
byte can be used to scale this and would allow encoding
of much higher rates. The allocation vectors are 6 bytes
long, allowing for a maximum network diameter of 6 routers
(or switches). We note that current datacenters have three-
tiered, tree-like topologies [13] with a maximum diameter of
5 switches. The allocation vectors could be made variable
length fields to achieve extensibility. Overall, our current
implementation imposes an overhead of 22 bytes for every
packet carrying rate requests.
Protocol description. The protocol operation is illus-
trated in Figure 7. (1). The sender initiates the flow by
sending a SYN packet with a rate request. Routers along
the path allocate rate and add it to the current allocation
vector in the congestion header. (2). Receivers respond with
a SYN/ACK and a rate request of their own. The congestion
header of the response includes the allocated rate vector for
the sender. (3). The sender uses this vector to determine its
sending rate and sends data packets. One of these includes a
rate request for the next RTT. (5). Once the sender is done,
it sends a FIN packet and returns its existing allocation.
Calculating desired rate. The sender uses information
about flow deadline and remaining flow length to determine
the desired rate that would allow the flow to meet its dead-
line. At interval t, the desired rate for the next RTT is given
by

rt + 1 =
remaining flow length − st ∗ rtt

deadline − 2 ∗ rtt



where st is the current sending rate, and rtt is the sender’s
current estimate of the RTT for the flow, which is based on
an exponential moving average of the instantaneous RTT
values. The numerator accounts for the fact that by the
next RTT, the sender would have sent st ∗ rtt bytes worth
of more data. The denominator is the remaining time to
achieve the deadline: one rtt is subtracted since the rate will
be received in the next RTT, while the second rtt accounts
for the FIN exchange to terminate the flow.

6. EVALUATION
We deployed D3 across a small testbed structured like the

multi-tier tree topologies used in today’s datacenters. The
testbed (Figure 8) includes twelve endhosts arranged across
four racks. Each rack has a top-of-rack (ToR) switch, and
the ToR switches are connected through a root switch. All
endhosts and switches are Dell Precision T3500 servers with
a quad core Intel Xeon 2.27GHz processor, 4GB RAM and
1 Gbps interfaces, running Windows Server 2008 R2. The
root switch is further connected to two other servers that are
used as traffic generators to model traffic from other parts
of the datacenter. For two endhosts in the same rack com-
municating through the ToR switch, the propagation RTT,
measured when there is no queuing, is roughly 500µs. The
endhosts are also connected to a dedicated 48-port 1Gbps
NetGear GS748Tv3 switch (not shown in the figure). We
use this for TCP experiments.

Our evaluation has two primary goals: (i). To determine
the value of using flow deadline information to apportion
network bandwidth. (ii). To evaluate the performance of D3

just as congestion control protocol, without deadline infor-
mation. This includes its queuing and utilization behavior,
and performance in a multi-bottleneck, multi-hop setting.

6.1 Exploiting deadlines through D3

To evaluate the benefit of exploiting deadline information,
we compare D3 against TCP. However, TCP is well known
to not be amenable to datacenter traffic patterns. To cap-
ture the true value of deadline awareness, we also operate
D3 in fair share mode only, i.e., without any deadline in-
formation and all flows treated as non-deadline flows. We
term this RCPdc since it is effectively RCP optimized for
the datacenter.5 With RCPdc, the fair share is explicitly
communicated to the hosts (i.e., no probe-based exploration
is required) and it has been shown to be optimal in terms
minimizing flow completion times [11]. Hence, it represents
the limit for any fair share protocol, such as DCTCP [4]
and other recent proposals for datacenters like QCN [3] and
E-TCP [14]. We further contrast D3 against deadline-based
priority queuing of TCP flows. Priority queuing was imple-
mented by replacing the Netgear switch with a Cisco router
that offers port-based priority capabilities. Flows with short
deadlines are mapped to high priority ports. Our evaluation
covers the following scenarios:

• Flow burst microbenchmarks. This scenario reflects the
case where a number of workers start flows at the same

5While the core functionality of RCPdc mimics RCP, we
have introduced several optimizations to exploit the trusted
nature of datacenters. The most important of these include:
exact estimates of the number of flows at the router (RCP
uses algorithms to approximate this), the introduction of the
base rate, the pause for one RTT to alleviate bursts, etc.

Figure 8: Testbed topology: red servers are end-
hosts, blue are switches, grey are traffic generators.

time towards the same destination. It provides a lower-
bound on the expected performance gain as all flows com-
pete at the same bottleneck at the same time. Our re-
sults show that D3 can support almost twice the number
of workers, without compromising deadlines, compared
to RCPdc, TCP and TCP with priority queuing (hence-
forth referred to as TCPpr).

• Benchmark traffic. This scenario represents typical data-
center traffic patterns (e.g., flow arrivals, flow sizes) and
is indicative of the expected D3 performance with cur-
rent datacenter settings. The evaluation highlights that
D3 offers an order of magnitude improvement over out of
the box TCP and a factor of two improvement over an
optimized TCP version and RCPdc.

• Flow quenching. We evaluate the value of terminating
flows that do not contribute to application throughput.
Our results show that flow quenching ensures the D3 per-
formance degrades gracefully under extreme load.

6.1.1 Flow burst microbenchmarks

In this scenario, a host in each rack serves as an aggregator
(see Figure 3) while other hosts in the rack represent work-
ers responding to an aggregator query. This is a common
application scenario for online services. All workers respond
at the same time and all response flows are bottlenecked
at the link from the rack’s ToR switch to the aggregator.
Since there are only three hosts in each rack, we use mul-
tiple workers per host. We also repeated the experiment
on a restructured testbed with more hosts per rack and the
results remained qualitatively the same.

The response flow lengths are uniformly distributed across
[2KB, 50KB] and the flow deadlines are distributed expo-
nentially around 20ms (tight), 30ms (moderate) and 40ms
(lax). As described earlier, the primary performance metric
is application throughput, that is, the number of flows fin-
ishing before their deadline. This metric was intentionally
chosen as datacenter operators are primarily interested in
the “operating regime” where the network can satisfy almost
all flow deadlines. Hence, we vary the number of workers
sending flows and across 200 runs of this experiment, deter-
mine the maximum number of concurrent senders a given
congestion control scheme supports while ensuring at least
99% application throughput. This is shown in Figure 9.

As compared to RCPdc, D3 can support almost twice as
many concurrent senders while satisfying flow deadlines (3-
4 times as compared to TCP and TCPpr). This is because
D3 uses flow deadline information to guide bandwidth ap-
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Figure 9: Number of concurrent senders that can
be supported while ensuring more than 99% appli-
cation throughput.
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Figure 10: Application throughput for varying con-
current senders and moderate deadlines (the Y-axis
starts at 60%).

portioning. This is further pronounced for relaxed deadlines
where D3 has more flexibility and hence, the increase in the
number of senders supported compared to tight deadlines is
greater than for other approaches. Note that since conges-
tion occurs at the aggregator’s downlink, richer topologies
like VL2 [13] or FatTree [2] cannot solve the problem.

For completeness, Figure 10 shows the application through-
put with moderate deadlines as we vary the number of con-
current senders to 40. Results look similar with tight and
lax deadlines [26]. While the performance of these proto-
cols beyond the regime of high application throughput may
not be of primary operator importance, the figure does help
us understand application throughput trends under severe
(unplanned) load spikes. Apart from being able to support
more senders while ensuring no deadlines are missed, when
the number of senders does become too high for D3 to sat-
isfy all deadlines, it still improves application throughput
by roughly 20% over TCP, and 10% or more, over RCPdc

and TCPpr. Hence, even if we relax our “operating-regime”
metric to be less demanding, for example, to 95% of applica-
tion throughput, D3 can support 36 senders with moderate
deadlines compared to the 22, 10 and 8 senders of RCPdc,
TCPpr and TCP respectively.

The figure also illustrates that RCPdc outperforms TCP
at high loads. This is because probe-based protocols like
TCP attempt to discover their fair share by causing queues
to build up and eventually, losses, ergo increasing latency
for a number of flows. Instead, RCPdc avoids queueing by
equally dividing the available capacity. Figure 11 highlights
this point by displaying the scatter plots of flow completion
times versus flow deadlines for TCP, RCPdc and D3 for one
of the experiments (moderate deadlines, 14-30 senders). For
TCP, it is evident that packet losses result in TCP time-
outs and very long completion times for some flows. Since
the hardware switch has a buffer of 100KB, a mere eight
simultaneous senders with a send-window of eight full sized
packets can lead to a loss; this is why TCP performance
starts degrading around eight senders in Figure 10.6

6The mean flow size in our experiments is 26KB. Hence, a
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Figure 11: Scatter plot of flow completion times vs.
deadlines for TCP (left), RCPdc (middle), and D3

(right). Points above the diagonal reflect flows that
have met their deadlines.

Fair share protocols, like RCPdc and DCTCP, address pre-
cisely this issue by ensuring no losses and short queues in the
network; yet, as they are unaware of deadlines, a large num-
ber of flows still miss their associated deadlines (see middle
Figure 11). For these particular experiments, RCPdc misses
8.1% of flow deadlines as compared to 1% for D3. Further,
looking at flows that do miss deadlines, RCPdc causes their
completion time to exceed their deadline by 75% at the 95th

percentile (30% on average). With D3, completion times are
extended by 27.7% at the 95th percentile (9% on average).
This implies that even if deadlines were “soft”, fair share
protocols still suffer, as a non-negligible fraction of flows ex-
ceed their deadline significantly. This is not acceptable for
datacenters where good performance has to be ensured for
a very high percentile of flows.

For TCPpr, we use two-level priorities. Flows with short
deadlines are mapped to the higher priority class. Such
“deadline awareness” improves its performance over TCP.
However, it remains hampered by TCP’s congestion control
algorithm and suffers from losses. Increasing the priority
classes to four (maximum supported by the switch) does
not improve performance significantly. Simply using priori-
ties with RCPdc will not help either. This is because dead-
lines can vary a lot and require a high number of priority
classes while today’s switches only support O(10) classes.
Further, as discussed in Section 3, switch prioritization is
packet-based while deadlines are associated with flows. Fi-
nally, bursty datacenter traffic implies that instead of stati-
cally mapping flows to priority classes, what is needed is to
dynamically prioritize flows based on deadlines and network
conditions. D3 tackles precisely all these issues.
With background flows. We repeat the above flow burst
experiment by adding long, background flows. Such flows
are used to update the workers with the latest data, and
typically don’t have deadlines associated with them. For
each run, we start a long flow from a traffic generator to the
receiver. This flow is bottlenecked at the link between the
receiver and its ToR switch. After five seconds, all senders
send their responses ([2KB, 50KB]).

Figure 12 shows the high application throughput oper-
ating regime for the three protocols. When compared to
the response-flows-only scenario, the relative drop in the
maximum number of senders supported is less for D3 than
for TCP, TCPpr and RCPdc. Performance significantly de-

majority of flows will require more than 3 RTTs to complete,
at which point the TCP send window will exceed 8 packets.
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Figure 12: Number of concurrent senders supported
while ensuring more than 99% application through-
put in the presence of long background flows.
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Figure 13: Application throughput with varying
number of senders, 2.9KB response flows and one
long background flow.

grades for TCP and TCPpr in the presence of queuing due
to background flows, which has been well documented in the
past [4]. It is noteworthy that even with only two senders,
TCP cannot achieve 99% of application throughput. TCPpr

implements a 3-level priority in this scenario, where back-
ground flows are assigned to the lowest priority class, and
deadline flows are assigned according to their deadline value
to the other two priority classes. However, the background
flows still consume buffer space and hurt higher priority re-
sponse flows. Hence, D3 is even better at satisfying flow
deadlines in the presence of background traffic.
With tiny response flows. TCP’s travails with flow bursts
seen in datacenters have forced application designers to use
various “hacks” as workarounds. This includes restricting
the response flow size [4]. Here, we repeat the flow burst
experiment with a uniform response size of 2.9KB such that
response flows are 2 packets long. Further, there exists
one long background flow. Figure 13 shows the application
throughput with moderate deadlines (mean=30ms). With
TCP, the long flow fills up the queue, causing some of the
response flows to suffer losses. Consequently, application
throughput starts dropping at only 12 senders. As a con-
trast, the other three approaches satisfy all deadlines untill
40 senders. Since response flows are tiny, there is no room
for D3 to improve upon RCPdc and TCPpr. However, our
earlier results show that if designers were to be freed of the
constraints imposed by TCP inefficiencies, D3 can provide
significant gains over fair sharing approaches and priorities.

Since RCPdc presents an upper limit for fair share pro-
tocols and performs better than priorities, in the following
sections, we will compare D3 against RCPdc only; TCP will
also be presented as a reference for today’s status quo.

6.1.2 Benchmark traffic

In this section, we evaluate the performance of D3 under
realistic datacenter traffic patterns and flow dynamics. As
before, we choose one endhost in each rack as the aggrega-

TCP (reduced RTO) RCPdc D3

Flows/s 100 (1100) 1300 2000

Table 1: Flow arrival rate supported while main-
taining >99% application throughput.
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Figure 14: Benchmark traffic including short re-
sponse flows (poisson arrivals with varying arrival
rate) and two long flows.

tor that receives response flows from the two other endhosts
in the rack. The response flow size is uniformly distributed
between [2KB, 50KB], and we focus on results with moder-
ate deadlines (mean=30ms). Further, each sender also has
one long flow to the aggregator. Both long flows are bot-
tlenecked at the aggregator’s link to its ToR switch. This
represents the 75th percentile of long flow multiplexing ob-
served in datacenter traffic [4]. We model the response flow
arrival as a Poisson process and vary the mean arrival rate.
As before, our primary focus is on the flow arrival rate that
can be supported while maintaining more than 99% appli-
cation throughput. This is shown in Table 1.

We find that under realistic traffic dynamics, both D3 and
RCPdc outperform TCP by more than an order of magni-
tude. These results are best understood by looking at the
underlying network level metrics. Figure 14(a) plots the per-
centiles for flow completion times (1st-5th-50th-95th-99th) at
different flow arrival rates. At very low load, the flow com-
pletion times for the three protocols are comparable (TCP’s
median flow completion time is 50% higher than D3). How-
ever, as the flow arrival rate increases, the presence of long
flows and the resulting queuing with TCP inevitably causes
some response flows to drop packets. Even at 200 flows/s,
more than 1% flows suffer drops and miss their deadlines.
Given the retransmission timeout value (RTO=300ms), the
99th percentile flow completion time for TCP is more than
300ms. Reducing the RTO to a lower value like 10ms [23]
does help TCP to improve its performance by being able
to support roughly 1100 flows (Table 1). Yet, even with
this optimization, TCP can support less than half the flows
supported by D3.

The flow completion times for D3 and RCPdc are similar
throughout. For instance, even at 2000 flows/s, the 99th

percentile completion time is almost the same even though
D3 can satisfy 99% of flow deadlines while RCPdc can only
satisfy 96.5% flow deadlines. We reiterate the fact that dead-
line awareness does not improve flow completion times over
RCPdc (which minimizes them already). However, by being
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cognizant of the flow deadlines, it ensures a greater fraction
of flows satisfy them.

We also look at the performance of the long flows to exam-
ine whether the gains offered by D3 come at the expense of
(non-deadline) long background flows. Figure 14(b) shows
the average throughput achieved by each long flow during
the experiment. The figure shows that long flows do not
suffer with D3. Instead, it achieves its gains by smarter
allocation of resources amongst the deadline flows.

6.1.3 Flow quenching

The results above illustrate the benefits of unfair shar-
ing. Beyond this, deadline awareness can also guide “flow
quenching” to cope with severe congestion. As described in
Section 1, under extreme duress, it may be better to shed
some load and ensure that a good fraction of flows meet
their deadlines, rather than to run all flows to completion
even though most will miss their deadlines. D3 design is par-
ticularly suited to such flow quenching. Since endhosts know
the rate needed to satisfy their deadlines and the rate the
network can offer, they can independently decide whether
to continue with the flow or not.

We implemented a straightforward flow quenching mech-
anism wherein endhosts prematurely terminate flows (by
sending a FIN) when: (i). desired rate exceeds their uplink
capacity, or (ii). the deadline has already expired. Figure 15
shows the application throughput with such flow quenching
for the benchmark traffic experiment.

Flow quenching leads to a smoother decline in performance
at extreme loads. From the application perspective, fewer
end users get empty responses. Beyond 2500 flows/s, D3

cannot cope with the network load since the flow arrival
rate exceeds the flow departure rate. Consequently, the ap-
plication throughput drops drastically as the network suffers
congestive collapse. However, with flow quenching, endhosts
do not pursue intractable deadlines which, in turn, spares
bandwidth for other flows whose deadlines can be met.

6.2 D3 as a congestion control protocol
We also evaluated the performance of D3 as a conges-

tion control protocol in its own right, operating without
any deadline information. Results in earlier sections already
show that D3 (and RCPdc) outperforms TCP in terms of
short flow latency and tolerance of flow bursts. Here we
look at other aspects of D3 performance.
Throughput and Queuing. We first evaluate the behav-
ior of D3 with long flows to determine the network through-
put achieved. To this effect, we start a varying number of
flows (2-20) to an endhost and record the flow throughput
at 1ms intervals. Figure 16(a) shows that the aggregate
throughput remains the same as we increase the number of
long flows with a median and average network throughput
of 0.95Gbps (95% of capacity). Overall, D3 matches the
performance offered by TCP for long flows.
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Figure 16: D3 performance with long flows.

We also measured the instantaneous queue length on the
bottleneck link to determine D3’s queuing behavior. This is
plotted in Figure 16(b). For all scenarios, the average queue
size is 4-6KB, the median is 1.5KB while the 99th percentile
is 16.5-48KB. As a contrast, TCP tends to drive long flows
to fill switch buffers, resulting in much larger queues. This
impacts any short (deadline) flows that share the same bot-
tleneck. Even compared to DCTCP, D3 achieves the same
throughput with queues that are shorter by a factor of five.
Multi-hop, multi-bottleneck setting. We have also eval-
uated the performance of D3 in a multi-hop network. Due
to space limitations, the results are discussed in [26]. Over-
all, our experiments show that D3 performs well in scenarios
with both multiple hops as well as multiple bottlenecks.

7. DISCUSSION
While we have evaluated many aspects of D3 design and

performance, a number of issues were not discussed in detail.
We briefly comment on the most important of these here.
Deployability. D3 takes a radical tact to align the datacenter
network to application requirements. It mandates changes
to almost every participant: applications, endhosts, and net-
work elements. While in all cases these changes might be
considered easy to implement, the choice of modifying the
main components is quite intentional. Discussions with both
datacenter operators and application designers have revealed
that they are quite willing to adopt new designs that would
free them from the artificial restrictions posed by existing
retrofitted protocols. This is especially true if the added
benefit is significant, as in the case of D3. The use of a
UDP-based transport protocol by Facebook is a good exam-
ple of the extra miles designers are willing to go to overcome
current limitations [22].

The biggest hurdle to D3 deployment may be the changes
necessitated to network elements. From a technical per-
spective, we have strived to restrict the state maintained
and the processing done by a D3 router to a bare mini-
mum. This allowed our user-space software implementation
to easily achieve line-rates and bodes well for a hardware
implementation. For instance, like RCP [11], D3 can be im-
plemented on NetFPGA boards.

As mentioned in Section 4, co-existence with existing pro-
tocols, such as TCP or other non-D3 traffic, was a non-goal
for D3. However, we do admit that a flag day where an en-
tire datacenter moves to D3-only traffic may not be realistic,
and incremental deployment is desirable. In this regard, we
believe that D3’s performance should not be impacted by
low-rate TCP or UDP traffic (e.g., control traffic), as rate



allocations at routers do account for the observed utilization
through the estimation of C. However, a detailed examina-
tion of D3’s performance in the presence of existing proto-
cols, and incremental deployment with a mix of D3-enabled
and legacy switches is beyond the scope of this work.
Soft vs. hard deadlines. Throughout the paper, D3 op-
erates under the assumption that deadlines are hard, and
once missed, flows are useless. This decision was intentional
to stress a, perhaps, extreme design point: Being deadline
aware provides significant value to the network. On the other
hand, one can imagine applications and flows that operate
on soft deadlines. Such flows may, for example, gracefully
degrade their performance once the deadline is missed with-
out needing to be quenched. The D3 model can accommo-
date soft deadlines in a number of ways. For example, since
the host controls the requested rate, flows with soft require-
ments could extend their deadlines if these are missed, or
fall back to fair share mode; alternatively, a two-stage al-
location process in the router could be implemented, where
demands are met in the order of importance (e.g., where not
all deadlines are of equal value) depending on the network
congestion. Yet, even with the presence of soft deadlines,
the evaluation in Section 6 stresses the benefits of deadline-
aware protocols. Another extended use-case involves persis-
tent flows with changing deadlines. D3 can be modified to
handle this as long as deadline changes are communicated
to the protocol. Such modifications as well as the long-term
stability of the protocol under various types of workloads or
end-host failure need further investigation.

8. CONCLUDING REMARKS
D3 is a control protocol that uses application deadline

information to achieve informed allocation of network band-
width. It explicitly deals with the challenges of the datacen-
ter environment - small RTTs, and a bursty, diverse traffic
mix with widely varying deadlines. Our evaluation shows
that D3 is practical and provides significant benefits over
even optimized versions of existing solutions. This, we be-
lieve, is a good illustration of how datacenters that are tuned
to application requirements and exploit inherent aspects of
the underlying network can perform above and beyond the
current state of the art. Emerging trends indicate that op-
erators are willing to adopt new designs that address their
problems and this bodes well for D3 adoption.
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