
Towards a deployable IP Anycast service

Hitesh Ballani, Paul Francis
Cornell University

{hitesh,francis}@cs.cornell.edu

Abstract

Since it was first described in 1993, IP anycast has been
a promising technology for simple, efficient, and ro-
bust service discovery, and for connectionless services.
Due to scaling issues, the difficulty of deployment, and
lack of application-specific features such as load bal-
ancing and connection affinity, the use of IP anycast is
limited to a small number of critical low-level services
such as DNS root server replication. More commonly,
application-layer anycast, such as DNS-based redirec-
tion, is used. As the number of P2P and overlay ser-
vices grows, however, the advantages of IP anycast be-
come more appealing. This paper proposes a new proxy
overlay deployment model for IP anycast that overcomes
most of the limitations of native IP anycast. We be-
lieve that this makes IP anycast a viable option for eas-
ing deployment and improving the robustness and effi-
ciency of many P2P and overlay technologies. We de-
scribe the new deployment model, some of its uses for
P2P and overlay networks, its pros and cons relative to
application-layer anycast, and discuss research issues.

1 Motivation
IP anycast is an IP addressing mode (v4 or v6) whereby
multiple geographically disperse hosts are assigned the
same IP address, with the result that IP routing deliv-
ers packets destined to the address to the nearest1 such
host [1]. This works without any changes to unicast rout-
ing as routers do not distinguish between multiple routes
to multiple different hosts and multiple routes to the same
host.

There are three broad uses for IP anycast: service dis-
covery, query/reply services, and routing services. With
service discovery, IP anycast routes the client’s packets
to a nearby server, which then redirects the client to a
server (possibly itself) which is subsequently accessed
using IP unicast. With query/reply services, the entire
exchange is done using IP anycast. With routing ser-
vices, IP anycast routes the client’s packets to a routing

infrastructure (eg. IP multicast), which then continues to
forward the packet using whatever technology is appro-
priate.

Together these constitute a powerful set of tools that
can ease configuration, and improve robustness and ef-
ficiency for many applications or lower-layer protocols.
There are three primary reasons for the simplicity and the
power of by IP anycast: First, it operates at a low level,
depending only on the IP routing substrate. This makes
it robust, scalable for large anycast groups (though not
for large numbers of groups), and simple for clients to
use (once it is in place). Second, it automatically discov-
ers nearby resources, eliminating the need for complex
proximity discovery mechanisms [21]. Finally, packets
are delivered directly to the target destination without the
need for a redirect (frequently required by application-
layer anycast approaches). This saves at least one packet
round trip, which can be important for short lived ex-
changes.

Examples of IP anycast routing services include rout-
ing IP multicast packets to shared multicast tree ren-
dezvous points [3, 6] and routing IPv6 packets (tunnelled
over IPv4) to IPv4/IPv6 transition devices [2]. The only
wide-scale deployments of IP anycast in a production en-
vironment are query/reply services for DNS: transpar-
ently replicating the root DNS servers [7, 5], primarily
to spread load as a defense against DDoS attacks, and
establishing “sink-holes” for DNS PTR queries to pri-
vate addresses [14]. On a local scale, IP anycast is used
by operators to simplify and improve local DNS server
availability [15] as well as to establish sink-holes [15].

In spite of the power of IP anycast, there are several
major problems that currently limit its use to a small
number of critical applications like DNS root server
replication. They include:

• IP anycast is incredibly wasteful of addresses. Be-
cause the routing infrastructure won’t accept IP pre-
fixes longer than a /22 (or a pre-CIDR /24), a single
IP anycast group consumes 1024 (or 256) scarce IP



addresses. The alternative would be to modify rout-
ing policy to accept larger prefixes, but that would
open the door to huge routing tables, which leads us
to the second problem:

• IP anycast scales poorly by the number of anycast
groups. Each such group requires a BGP routing en-
try in the global routing system. GIA [8] proposed
router modifications to improve scalability, but ex-
pecting core router upgrades for this purpose is al-
most certainly a non-starter.

• IP anycast is difficult and in some cases, impossible
for users to deploy. It requires that the user obtain a
block of IP addresses and an AS number, something
that is currently outside the normal allocation poli-
cies of registration authorities (i.e. ARIN, RIPE,
etc.). Even if such a block is obtained, each IP any-
cast destination (target) must run a routing protocol
with the upstream ISP, which requires negotiations
with the ISP, a significant amount of manual config-
uration, and a certain level of expertise.

• IP anycast is subject to the limitations of IP rout-
ing, in several ways. First, IP may suddenly route
packets to a different anycast target, thus breaking
the notion of connection affinity2, which in turn
breaks stateful protocols like TCP. Second, IP rout-
ing has no notion of load—not even link/router load,
let alone server load. This problem is addressed
in [19], but again by requiring changes in routers.
Finally, BGP sometimes converges slowly, making
a destination unreachable for many seconds or even
minutes [16].

Because of these limitations, anycast today is typically
implemented at the application layer. This offers what
is essentially anycast service discovery—DNS-based ap-
proaches use DNS redirection while URL-rewriting ap-
proaches dynamically rewrite the URL links as part of
redirecting a client to the appropriate server. These ap-
plication layer approaches are easier to deploy (as they
do not require any router modifications), provide fine
grained control over target server load, and naturally
maintain connection affinity. Because of these advan-
tages, application-layer anycast is the method of choice
for Content Distribution Networks (CDN) today.

Imagine for the moment that the shortcomings of IP
anycast could be eliminated without sacrificing (at least
not by much) its advantages. Were this possible, the
uses for IP anycast would expand dramatically, espe-
cially for overlay and P2P technologies. For instance,
IP anycast could be used to bootstrap members of a DHT
(eg. Chord [11]), P2P multicast overlay [24], or P2P file
sharing [25] network without requiring a central server
to redirect joining members to existing members. Indeed,

eliminating the bottleneck and single points of failure im-
posed by the central server(s) remains an open problem
for P2P networks of all kinds [26]. This would work
by having each member join the IP anycast group once
it becomes a member. Subsequently newly joining mem-
bers would transmit “member discovery” messages to the
anycast group, thus discovering a nearby member.

Likewise, IP anycast could be used by clients of a
DHT to simply and efficiently query the DHT, or to query
services that themselves are built on DHTs, like DNS-
style name resolution [27]. IP anycast could be used to
send HTTP queries to nearby web proxies, without the
need for explicit configuration of the web proxies or the
latency overhead of a DNS query or an HTTP redirect.

IP anycast could be used to efficiently transmit packets
into overlay networks like RON [12] or i3 [9]. RON is
a particularly interesting case, as it would allow nodes
that are not aware of the RON overlay to never-the-less
use the RON overlay. The basic idea here is that all N

members of a RON overlay would join an identical set
of N anycast groups. The anycast address of each group
would represent one of the RON nodes. Packets from
a non-RON node J to a given RON node X would be
routed via IP anycast to the nearest RON node Y. RON
node Y could then forward the packet to X via the RON
overlay. Likewise, return packets from X to J could be
sent through the RON network to Y and then forwarded
using unicast to J. This would greatly expand the scope of
a RON network: from only being able to transmit packets
between RON members to being able to transmit packets
between RON members and any node in the Internet.

If the IP anycast service could be extended so that a
node could be both a client and a target3 (i.e., IP anycast
packets sent by a member of the anycast group would be
forwarded to the nearest group member other than the
sender), then still more uses can be envisioned. For in-
stance, networked game players could find nearby part-
ners, and members of a P2P multicast overlay could find
nearby peers.

2 Proxy IP Anycast Service (PIAS)

PIAS is an IP anycast deployment approach that over-
comes most of the limitations of native IP anycast while
maintaining most of its strengths. The basic idea is
to implement IP anycast in an overlay, in much the
same spirit as implementing IP multicast in the mbone
overlay. Specifically, a large number of anycast prox-
ies are deployed around the Internet. These are router-
like boxes that advertise a block of IP anycast addresses
into the routing fabric (BGP, IGPs), but are not them-
selves the anycast target destinations. Instead, packets
that reach the anycast proxies through native IP anycast
are subsequently tunnelled (or NATed) to the true target



Figure 1: Proxy Architecture

destinations4 using unicast IP (see figure 1). Hosts be-
come anycast targets by registering with a nearby anycast
proxy, which is itself discovered using native IP anycast!

The PIAS architecture solves the first three limitations
of IP anycast cited above. It solves the problem of inef-
ficient address usage because all the IP addresses in the
prefix advertised by the proxies can be used by different
anycast groups. In fact, PIAS does one better. It iden-
tifies an IP anycast group by the full transport address
(TA), i.e. IP address and TCP/UDP port, thus allowing
thousands of anycast groups per IP address. Likewise, it
solves the routing scaling problem by allowing so many
anycast groups to share a single address prefix. Finally,
it makes it very easy for a host to become an IP anycast
target. All the host has to do is register with a proxy.
There are no special routing requirements. The task of
obtaining the address block/AS numbers falls upon the
infrastructure operator; the effort put into this deploy-
ment is amortized across all the groups the infrastructure
can support.

Of course, the reader may (and should) argue that all
we’ve done is push the scaling and addressing problems
from IP routing into the proxy overlay. This is very true,
and quite intentional: the problems are much easier to
solve when isolated from IP routing in this way. We now
address scaling and other design issues in the proxy over-
lay. We start by stating our design goals:

• Scale by the number of groups
• Scale by the size of any group.
• Scale by group dynamics, by both continuous mem-

ber churn and flash crowds, including those caused
by DDoS attacks.

• Scale to ∼10
5 proxies. 50 proxies in each of the

largest 200 ISPs, which strikes us as plenty of prox-
ies, gives us ∼10

4 proxies; to be safe we target for
an order of magnitude more.

• Backwards compatible, implying no changes at the
clients and minimal changes (at least no network
stack changes) at the targets5.

• Offer features associated with application-layer
anycast: load balancing, connection affinity, and the
ability for a target to also be a client.

The first design goal dictates that we cannot require
each proxy to know of all groups. As a result, for each
group we designate a small number of proxies, called
Rendezvous Anycast Proxies (RAP), to keep track of the
membership of the group. We map groups to RAPs using
consistent hashing[10], thus spreading the load of main-
taining membership information evenly over the set of
proxies. Each group is assigned a small number of repli-
cated RAPs, for reliability reasons. Note that we require
all proxies to know the status of all other proxies. This
is justified by the maximum number of expected proxies
(10

5) and the stable nature of the proxies. The proxies
may maintain this global information through flooding,
gossip [22] or a hierarchical structure [18]. Such an ar-
rangement ensures that we attain a simple one-hop DHT
and hence, limit the latency overhead of routing through
the proxy overlay.

The RAP approach described above doesn’t scale if a
given group is very large, or has a lot of churn (second &
third goals), since each of a small number of RAPs have
to maintain membership for the whole group. A large
group would risk overwhelming the RAPs with state in-
formation while a group with a lot of churn would lead
to a stream of update information to the RAPs. Thus,
we add another tier of membership management in the
form of the Join Anycast Proxy (JAP). Specifically, the
JAP is the proxy that is contacted by a target when it
joins the group. The fact that the join is done through na-
tive IP anycast implies that the JAP is close to the target.
The JAP is responsible for authenticating targets, and for
maintaining liveness status of targets. The JAP also tells
the RAP approximately how many targets it has for a
given group (i.e. within 20% or 30% of the exact num-
ber). This way some number of targets can join or quit
a given JAP without the RAP needing to be told. As a
result, for very large groups, the RAP at worst scales ac-
cording to the number of proxies, and for very dynamic
groups the rate of updates to the RAPs is bounded and
tunable.

This two tier JAP/RAP architecture results in packet
paths as shown in Figures 2 and 3. When a client of
the anycast service sends the first packet to the group, it
reaches the Ingress Anycast Proxy (IAP) through native
IP anycast routing. If the IAP does not know of any JAPs
for the transport address (TA) this packet is destined to,
the IAP resolves the TA to a RAP and tunnels the packet
there. The RAP selects a JAP based on certain criteria
(proximity to the IAP, load balance, or affinity, or some
combination of these, as specified by the sixth goal) and
tunnels the packet there. It also informs the IAP of the



Figure 2: Initial packet path - 4 Segments long

Figure 3: Subsequent packet path - 3 Segments long

selected JAP so that subsequent packets are tunnelled di-
rectly from the IAP to the JAP (Figure 3). Finally, the
JAP sends the packet to the target, either by tunnelling
if the target can de-tunnel packets, or using NAT other-
wise (fifth goal)6. Note that since the IAP is close to
the client, and the JAP is close to the target, the extra
distance required to traverse those proxies typically not
significant. We evaluated the overhead of this 3-segment
path through simulations involving synthetic topologies
generated using GT-ITM[23] and the results confirmed
our intuition about the minimal overhead.

The reverse path transits the JAP, but avoids the IAP.
The reverse path must go through at least one proxy, be-
cause the target is unlikely to be able to spoof the source
address to be that of the anycast group, and the client ex-
pects a packet from the anycast group (fifth goal). By
sending the return packet through the JAP and not the
IAP, we allow the JAP to better (passively) monitor the
health of the target, and to maintain NAT state. Note that
it makes no sense for the IAP to try to monitor the health
of the target, because packets may be flowing to the tar-
get through many IAPs, but through only one JAP.

Finally, the JAP is responsible for flushing the cached
state from IAPs should it lose all of its targets (or enough
of its targets that it should shed some of its load). Hence,
if all the targets for a TA go down and the JAP receives a
packet for the same TA, the JAP can send a control mes-

sage to the IAP asking it to invalidate the cache entry.
This forces the IAP to go back to the RAP for the group
and ask for the address of some other JAP for the same
group. As a result, the IAP is able to safely cache in-
formation for a long time. In case the JAP crashes, the
IAP must learn of this and go to the RAP for subsequent
packets. This would be attained using a health monitor-
ing system7 where each proxy’s health is monitored by a
small group of other proxies and a proxy’s demise is dis-
seminated using a flood through the overlay. The crash-
ing of the JAP does not affect the target, whose packets
will be anycasted to some other proxy, which takes up
the job of the JAP for this target by asking it to register
again.

2.1 Advanced Features
As stated above, the RAP may select the JAP based on
a number of criteria, including proximity, connection
affinity, and load balancing. The JAP subsequently se-
lects a target, possibly also based on connection affinity
and load balancing criteria. It is this selection process
that imbues PIAS with features normally found only in
application-layer anycast. As such, this aspect of PIAS
deserves more discussion.

The first thing to point out is that these three criteria
are in fact at odds with each other. If both load balance
and proximity are important criteria, and the JAP near-
est to the IAP is heavily loaded, then one or the other
criteria must be compromised. This is of course true of
application-level anycast as well.

The second thing to point out is that the overlay struc-
ture of PIAS actually weakens its ability to find a tar-
get near a client, as compared to native “E2E” IP any-
cast. With PIAS, we know that the client is near the
IAP, and the target is near the JAP (because both paths
are discovered by native IP anycast), but anycast cannot
be used to insure that the IAP and JAP are near each
other. Therefore, the proxies must explicitly determine
their distance to each other. While we haven’t settled on
the best way to do this, we note that scalable proximity
addressing schemes like Vivaldi [20] provide one reason-
able approach.

Because of the way we scale the RAPs (give them only
“rough” information about the targets at a given JAP),
and because we use multiple RAPs for each group, we
cannot provide exact load balance for all groups (though
we might be able to do so for a small number of select
groups). Instead, we aim for “statistical” load balancing.
Never-the-less, this is much better than what is provided
by native IP anycast.

Finally, we note that proxies could potentially base
their target selection on still other criteria. For instance,
in the case where a target in a given anycast group is
also a client of that group, proxies can exclude that tar-
get from their selection. A proxy could select a random



target, something that might be useful for instance for
spreading gossip. A proxy could use some kind of ad-
ministrative scoping to select a target, for instance se-
lecting a target with the same (unicast) IP prefix as the
client. A proxy could even replicate packets and send
them to multiple targets.

2.2 Implementation
We have implemented and tested the basic PIAS system
in the laboratory as a sanity check for our ideas and to
get a better grip on the implementation issues facing us.
With the system geared towards router-like boxes, the
current implementation has 2 components:
1. A user-space component responsible for the overlay
management tasks, such as handling proxy join/leaves,
target join/leaves, health monitoring etc.
2. A kernel-space component responsible for the ac-
tual forwarding of packets through the use of Netfil-
ter hooks[13]. This involves tunnelling of the packets
when sending them between 2 proxy nodes, and using
a NAT[17] when handling packets to/from a target. The
current kernel implementation doubles up the packet for-
warding time as compared to the normal packet forward-
ing by the unmodified kernel. The actual figures are not
presented as they do not offer any additional insight into
the overhead involved.
While such an implementation is geared towards a sce-
nario where we have our own infrastructure, piggyback-
ing our deployment on an existing research testbed (e.g.
RON [12]) would necessitate a pure user-level imple-
mentation. This would involve a not-too-difficult porting
of the kernel level component to user space.

We feel that this implementation, although useful as
a sanity check, does not have much to offer in terms of
understanding the issues that we need to deal with (for
an actual deployment). Hence, our main challenge, is
deploying PIAS on the Internet and convincing applica-
tions to use our infrastructure service. For this purpose,
we are looking at several possible deployment opportu-
nities and have acquired an address block (a /22) and an
AS number from ARIN for this purpose.

3 Discussion and Research Issues
PIAS solves the major issues that limit IP anycast de-
ployment. In doing so, it slightly weakens some of the
major strengths of native IP anycast. In particular, we’ve
lost some of the natural robustness of IP anycast, since
we now rely on more than just IP routing. In addition,
we’ve lost some of the simple nearness properties of na-
tive IP anycast. Nevertheless, we believe that PIAS is
adequately robust and will provide good nearness prop-
erties in addition to the problems it solves.

Because PIAS uses indirection, it deserves compari-
son with i3 [9]. One major difference is that i3 requires
changes to the network stack8 to add the i3 layer between

the current network and transport layers. PIAS requires
no changes in clients whatsoever, and can operate with
no changes in servers (if some surrogate node registers
on its behalf). This makes deployment of PIAS easier
than that of i3. A second important difference is that
PIAS uses IP anycast, thus making it straightforward to
derive proximity. Indeed, i3 could benefit from using
PIAS, both as a means of i3 node discovery and routing
packets to nearby i3 nodes.

One major problem that we haven’t yet discussed is
connection affinity. The issue is how to maintain affin-
ity when native IP routing causes a different IAP to be
selected during a given client connection (if the same
IAP is always used, then the IAP will continue to use the
same JAP that it initially cached). Application-layer any-
cast doesn’t have this problem, because it always makes
its target selection decision at connection start time, and
subsequently uses unicast. A simple solution would be
to have RAPs select JAPs based on the identity of the
client. This way, for instance, even if IP routing caused
packets from a given client to select a different IAP, it
could be routed to the same JAP. Unfortunately, this ap-
proach completely sacrifices proximity and load balance.

A better alternative would be to identify groups of
IAPs among which any route changes are highly likely
to take place. For instance, all IAPs in an ISP, a given
POP, or a metro area. These IAPs could then coordinate
in some way to provide affinity. How best to do this, or
indeed determining if it is even necessary, will require
experimentation.

Fortunately such complex affinity mechanisms may in
fact not be necessary—the affinity provided by IP routing
may in fact be good enough. We ran some measurements
against existing anycasted DNS root servers and anycast
sink holes to determine how often IP routing selected
different destinations. We found that native IP anycast
itself provides good affinity. Over 9 days of measure-
ments at a rate of a probe every minute from 40 Plan-
etlab sites to six anycast targets, 93.75% of the source-
destination pairs never changed. The remaining 6.25% of
the source-destination pairs (15 pairs) experienced a total
of 120 route changes over the entire duration (i.e over ∼
13000*15 probes), with at most 8 changes for any given
source-destination pair. These experiments were also re-
peated with higher probe rates (once every 10 seconds)
to make sure we were not missing out on very frequent
flaps—the results appear similar.

To put this in more concrete terms, the probability that
a two minute connection would experience a change is
roughly 1 in 13,000, and the probability that a one hour
connection would experience a change is roughly 1 in
450. If these numbers hold (or improve!) across a larger
anycast deployment, then it is clear that most, though not
all, applications would not require any affinity mecha-



nisms beyond those provided by IP routing. This is one
area that requires further experimentation.

A second main area for further research is how to run
BGP and IGP routing so that both routing changes and
routing failures are minimized, and so that routing se-
lects good paths to proxies. There are concerns that the
use of policies in inter-domain routing adversely impact
it’s ability to find nearby destinations. We tried to mea-
sure the stretch between anycast latencies and the short-
est unicast path to the afore-mentioned DNS root servers
and sink-holes, but found it difficult to get conclusive re-
sults, in part because of hierarchical nature of these any-
cast deployments[7]. On a bright note, measurements by
operators of J-root[28], which is anycasted at 16 different
locations, have shown that anycast does provide a decent
amount of correlation between the position of the server
and the clients that use it. The impact of BGP instability
is one area where PIAS seems to be worse as compared
to native IP anycast due to the addition of the proxies be-
tween the end hosts. Modelling the systems so as to rely
on IGPs for faster convergence and using redundancy9

to counter the occasional BGP event seem to be the only
options to ensure that PIAS is not severely hit by these
factors. Another concern is the impact of such a large
anycast deployment on BGP dynamics. While we hope
that the fact that the anycast prefix is being advertised
from a large number of locations will lead to localized
and rarer BGP hold downs [16], the opposite could oc-
cur.

While we do not have space to delve into the deploy-
ment model, some questions that need to be addressed for
a practical service include the billing model, the security
of the infrastructure, provision of a flexible and efficient
interface to the customers and so on. There is also the is-
sue of the number of proxies and their locations (in terms
of number of tier-x ISPs and number of proxies in each
POP for each selected ISP) so as to provide some form of
load balance and to keep the overhead of traversing the
proxy infrastructure limited.

Ultimately, the only way we can resolve these research
issues is with deployment of a working PIAS and exper-
imentations with real applications.

Notes
1nearest according to the routing metrics used by the routing

protocols—this meaning holds throughout the paper
2tendency of subsequent packets of a “connection” to be delivered

to the same target - referred hereon as affinity. While lack of affinity
is perceived as a major anycast weakness, preliminary measurements
discussed later show that this perception may be overly pessimistic

3in much the same way that a member of an IP multicast group can
be both a sender and a receiver.

4members of an anycast group
5we would like to be able to support legacy server-side applications

and are able to do so.
6Figures 2,3 assume that the JAP uses a NAT

7here we are concerned with the health of the proxies rather than
the JAP keeping track of the health of one of its targets

8though this could be done through the use of a proxy on the end-
host, allowing legacy applications to use i3

9using multiple anycast prefixes - each service is given more than
one transport address

References
[1] C. Partridge et. al., “HostAnycasting Service”, RFC 1546,

November 1993.
[2] C. Huitema, “An Anycast Prefix for 6to4 Relay Routers”, RFC

3068, June 2001
[3] D. Kim et. al., “Anycast Rendevous Point (RP) mechanism us-

ing Protocol Independent Multicast (PIM) and Multicast Source
Discovery Protocol (MSDP)”, RFC 3446, January 2003

[4] Y. Rekhter et. al., “A Border Gateway Protocol 4 (BGP-4)”, RFC
1771, March 1995

[5] T. Hardy, “Distributing Authoritative Name Servers via Shared
Unicast Addresses”, RFC 3258, April 2002

[6] Dina Katabi, “The Use of IP-Anycast for Building Efficient
Multicast Trees”, Global Internet’99, Costa Rica, 1999

[7] J. Abley, “Hierarchical Anycast for Global Service
Distribution”, ISC Technical Note ISC-TN-2003-1,
http://www.isc.org/tn/isc-tn-2003-1.html

[8] Katabi, D. et. al., “A Framework for Global IP-Anycast (GIA),”
ACM SIGCOMM 2000

[9] I. Stoica et. al., “Internet indirection infrastructure,” ACM SIG-
COMM, August 2002.

[10] Karger, D. et. al., Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the World
Wide Web. ACM Symposium on Theory of Computing (El Paso,
TX, May 1997).

[11] Ion Stoica et. al. “Chord: A scalable peer-to-peer lookup service
for internet applications”. ACM SIGCOMM, August 2001.

[12] David G. Andersen, et. al., “Resilient Overlay Networks,” ACM
SOSP, Canada, October 2001

[13] http://www.netfilter.org
[14] http://www.as112.net/
[15] http://www.nanog.org/mtg-0310/miller.html
[16] Z. Mao et. al., “Route Flap Dampening exacerabtes Internet

routing convergence”, SIGCOMM’02.
[17] P. Tsuchiya et. al., ”Extending the IP Internet Through Address

Reuse,” ACM SIGCOMM Computer Communications Review,
23(1):16-33.

[18] A. Gupta et. al., “One Hop Lookups for Peer-to-Peer Overlays”,
HotOS-IX, May2003.

[19] W. T. Zaumen et. al., “Load-Balanced Anycast Routing in Com-
puter Networks”, ISCC 2000.

[20] Frank Dabek et. al., “Vivaldi: A Decentralized Network Coordi-
nate System,” SIGCOMM ’04.

[21] http://www.akamai.com/en/resources/pdf/whitepapers/ Aka-
mai Internet Bottlenecks Whitepaper.pdf .

[22] R. Rodrigues et. al.,“The Design of a Robust Peer-to-Peer Sys-
tem”, ACM SIGOPS European Workshop,Sep. 2002.

[23] Ellen W. Zegura et. al. “How to model an internetwork”, IEEE-
Infocom, March 1996.

[24] Dejan Kostic, et. al., ”Bullet: High Bandwidth Data Dissemina-
tion Using an Overlay Mesh” SOSP 2003

[25] P. Karbhari, et. al., ”Bootstrapping in Gnutella: A Measurement
Study”, PAM’04

[26] M. Castro, et. al. ”One ring to rule them all: Service discov-
ery and binding in structured peer-topeer overlay networks”,
SIGOPS European Workshop, 2002.

[27] V. Ramasubramanian et. al., ”The Design and Implementation of
a Next Generation Name Service for the Internet”, SIGCOMM,
August 2004.

[28] P.Barber et. al., ”Life and Times of J-Root”, Nanog Presentation,

http://www.nanog.org/mtg-0410/kosters.html


